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The author dedicates this work
in respectful memory of
Aleksandr Yakovlevich Khinchin

INTRODUCTION

Problems on Diophantine approximations with exponential functions
form one of the sources for the material presented in this monograph.

Let g > 2 be a natural number. Let a be a real number, 0 < a < 1.
Let us consider the sequence of fractions ﬁugxl, XxX=1,2, ... . We
let & be an interval on the segment [0l1], and |5| its length. We let
Nb(b) be the number of fractions [agx}, X=1, 2, ..., P lying in the
interval §. We shall say that a sequence of fractions {agx}, X=1,
2, ..., 1s uniformly distributed on [0l] if the relationship

N
.ggl.qa].

)22
is valid for any interval §.
Let us consider the infinite sequence consisting of the terms 0,
1, «sey, 8-1,
ay, Gy Gg.n. . (1)
We select a natural number s and write a sequence of s-tuples
@10y . (B Gs. . Q) (B0« - Bens). + - (2)
Let A be any fixed s-tuple consisting of the terms 0, 1, ...,
g — 1. We let Np(A) be the number of times the s-tuple A is encountered
prior to the Pth term of the Sequence (2).
We shall call the sequence (1) a normal sequence if

AR _ 1

P o
for any natural number 8 and any s-tuple.
We decompose a into an infinite fraction written to the base g
a [ X R J
LS b & (3)
¢

. ;| -1-
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A well-known theorem ([1], page 233) states: a uniform dietribu-
tion of the fractions fagx}, X=1, 2, ... on the segment [01] is
equivalent to the normality of the sequence

Qy, Gy, Gyoeo s (4)

Problems of Diophantine approximations with exponential runogiona
have been the subject of careful study. One of the first results to
appear was the theorem stating that with respect to the Lebesque
measure for almost all numbers a, 0 < a< 1, the sequence of fractions
{agx} x =1, 2... 1s uniformly distributed on the segment [0l] (see
[2]). Thus the existence of normal sequences of digits was established.

Borel took a similar approach. Borel ([3], page 197) called a
real number a, 0 < a < 1 weakly normal with respect to a base g (I
have deliberately translated "simplement normal" as weakly normal) 1if
the sequence

a,04,85,...,
obtained by decomposing a into an infinite fraction written to base g
a= (a,/g) + (32/32) + ..., has the property that each of the terms
appearing in it occurs with an asymptotic frequence equal to 1/g.
Moreover, Borel calls a number a absolutely normal if it is weakly
normal with respect to every natural base g larger than unity.

On the baslis of measure theory, Borel established the existence
of absolutely normal numbers.

In §6 of the present monograph, it is proved that an absolutely
normal number a possesses the property that no matter what natural
base g is used in the decomposition of a,

R ST
the suquence a;, 85, .. will be a normal sequence and, consequently,
for a..r natural g > 2 the fractions {agx}, x=1, 2, ..., will be

norm:lly distributed.
Qad

FTD-TT-52-1367/1+2




In our monograph, the emphasis has been shifted from problems
involving the distribution of fractional portions of an exponential
function to the normal sequences.

Problems assoclated with the use of the words "table of random
numbers" or "table of pseudorandom numbers" also furnish some of the
material discussed in this monograph. Thé discussion contains the
stipulation that we are speaking of & table that has no boun& in one
direction, 1.e., we are concerned with an infinite sequence of num-
bers., -

Certain authors do not define these words when they use them.

_These authors include persons concerned with the practical utiliza-
tion of such tables. Kendall and Smith ([4), page 167) in an article
concerned with tests for checking numerical sequences for "randomness"
write that "... for the purposes of this article, the logical aspect
has been deemphasized... ." In his report, Steinhaus [5] notes that
the words "randoh sequence" are in daily use by statisticians, al-
though they do not define these words. In particular, such lack of
precision may be found in several studies dealing with the Monte .
Carlo method ([6] for example).

We find a desire to employ these words precisely in Venn (7] vho
is of the opinion that "randomness" should be defined in t’rml of
frequency.

Mises follows Venn ([8), page 28). Mises has introduced the
word collective. A collective is derined.by two conditions ({8], page
31).

1. The relative frequencies of any terms must have definite

-

limiting values.
2. The limiting frequency value of & term "should remain in-
variant if any portion of the sequence is arbitrarily selected anc

D TT-62-1367/142 -3-
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Just this portion is then examined"v(requirement of collective irregu-
larity). '

The formulation of Mises' second condition is not clear. To see
how to give Mises' hints a preclse meaning, see [9], page 218, [10],
and [60].

Some authors departed from Mises' nrogram to isolate subsequences:
they remained on the path described by Venn and grouped terms in the
sequence, studying theif distribution. In particular, this was the
approach used by Copeland [11] who introduced the concept of the
admissible number (see §11), by Reichenbach, who introduced a concept
identical with the concept of the admissible number [61], by A.G.
Postnikov and I.I. Pyatetskiy [12], who introduced the concept of a
Bernoulli-normal sequence.

Let there be given two positive numbers p and q such that p + q =
= 1, Consider the infinite sequence composed of the symbols 0 and 1,

L (5)
Let s be any natural number. We write Sequence (5) as a "caterpillar.”
Lo TR [T W TR ¥ PR PIVaR, S (6)
Let A = (61... 63) be any s-tuple consisting of the symbols O and 1.
We let NP(A) be the number of appearances of the tuple A prior to the
Pth term of Sequence (6). We call Sequence (5) a Bernoulli-normal

sequence of symbols if for any natural s and any s-tuple,

N, o
. ! ;ﬁﬁ'gég"’"r" B
where J 1s the number of ones among the symbols of A = (61... 6.).
The strong law of large numbers for stationary random sequences:

(see {13], page 417) permits us to establish, in particular, this

theoren.
Theorem. Let an unlimited number of independent trials be carried

-u-



out; for each triel the event designated by the symbol 1 has probabil-

ity p, while the event designated by the symbol O has probability g.

With probability unity, the sequence of outcomes will be Bernoulli-

normal,

-
v

This theorem, 1n particular, establishes éﬁe existence of
Bernoulll-normal sequences of symbols.

In §11 it is proved that the concepts of admissible number and
Bernoulli-normal sequence of symbols are equivalent. The introduction
of the concept of Bernoulli-normal sequences while making more precise

the use of the term "table of pseudorandom numbers" is justified by

~the fact that such sequences of numbers (or more general sequences)

are clearly sufficient for the construction of a numerical method of
analysis similar to the Monte Carlo method, but ylelding a reliabdle
error estimate (see [14]).

The reader will find additional material on the problem of tables
of random numbers in the Supplemont(l).

The concept of a sequence fully distributed with respect to a
function F(x) represents a generalization of the concept of & normal
sequence of symbols and the concept of a Bernoulli-normal sequence of
symbols,

Let there be given a distribution function P(x). Consider the
infinite sequence of real numbers

o, 0 0,.... (7)

We choose any natural number 8 and any system 4 = (845 oes 8,) 0°
intervals &, = (albl)’ ceey By = (a'ba), whose end points are points
of continuity for the funotion F(x). We form the line

(c.:....l.)(m-.c...)...(cm,.....ln...)... (8)
and let NP(A) be the number of tubles prior to the Pth term of Sequ - --
(8) in which the first component belongs to 4,, the second to by ..

-5



and the sth to 4o,. We say that Sequence (7) is completely distributed
with respect to the function F(x) if for any s and any system of inter-

vals A the asymptotic relationship

Np(a)

5 = (F (&) — F(@)). .. (F(b)—F @), (9)

lim
Pustn

is valid.

A special case of this concept — the concept of a completely uni-
formly distributed sequence in which F(x) = x, 0 < x < 1 was intro-
duced by N.M. Korobov [1] (in another form).

The concept of a normal sequence of symbols is obtained from this
general concept when the sequence consists of the numbers 0, 1, ...,

g — 1, and the distribution F(x) equals

0 2<0
S B
8 8 ['4
i ..... > o 010<le.

The concept of a Bernoulli-normal sequence of symbols is obtained
from this concept when the sequence consists of the numbers O and 1,
and the distribution function F(x) equals

0 x<L0
Fix)={q 0<x<|
1 1<

For any distribution function F(x) there exists a sequence that
1s completely distributed over the function F(x). This follows from
the strong law of large numbers for stationary random sequences ([13],
page 417), which in this special case ylelds the following generaliza-
tion of Glivenko's theorem ({15), page 328).

Theorem. Let the random variable £ have a distribution function

F(x). Let us take an infinite sample of this random variable:

.‘.".-.o..’.ooc

This sequence is completely distributed with respect to the func-
-6-
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tion F(x) with probability equal to unity.

I next introduce a concept broader than the concept of a sequence
completely distributed over the function F(x).

Let there be given a random sequence stationary in the ﬁarrow
sense, 1.e., a sequence of random variables

% T (10)
such that for any set of natural nuymbers n, < n, < ng, any set of
intepvals B1s By eees As on the real line, and any natural n
Plin€hu e in €8) = Plinan€hue.. ., Ean€A))

(P is the probability).

We assume that Sequénce (10) 1s metrically transitive (see [13],

page 410).

Let there bé given the infinite sequence of real numbers
LI Y N (11)
Let us take any natural number s and any system A = (Al’ cees Ae) of
8 intervals on the real line. We write
(%% .. @) (225, . . &4). .. (12)
and let NP(A) be the number of times the s-tuple 4in which
R €4y, 0,4, €4,,..., 24,4 €4,
is encountered prior to the Pth term of Sequence (12).

The infinite Sequence (11) is called a normal realization of a
stationary random sequence (the term was proposed by A.N. Xolmogorov)
if for any natural s and any system of intervals A = (Al’ ceey AS)
the equality

Np(d)

gL"Lj*-“PG;@A,,....‘;tA’)- (13)

is valid.
On the basis of the strong law of large numbers for stationary
random cequences (see [13], page 417) a realization of a metrically

transl' lve stationary random sequence will be normal with probabl .-

-7-
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equal to unity,

+« The problem ¢f constructing normal realizatiohs of statisnary
random processes by arithmetic means is of interest. A sequence con-
structed by arithmetic means is called a sequence given with the aid
of a primitive recursion function.

Sierpinski [i6] dealt with an effective definition of absolutely
normal numbers. Lebesgue's study [17] belongs to this group of prob-
lems. .

Champernowne [18] constructed a normal sequence of symbols (he
constructed a Bernoulli-normal sequence with p = q = 1/2, and g = 2).,
Other methods for constructing normal sequences of symbols have been
given by Copeland and Erdds [50] and Davenport and Erdlds ([51].

The argument used to prove that a sequence written by Champer-
nowne's method 1s a normal sequence of symbols is quite complicated.
A.@. Postnikov [19]) has noted that the argument is simplifi‘d con-

siderably if the following criteria established by I.I. Pyatetskiy [20]

are used.
Theorem. Let there be a sequence consisting of the symbols

ov beoo .‘-h].
@, a4, 0,. . .. (14).

such that there exists a constant C > 0 such that for any natural

number s and any s-tuple

No@) _C
B<v

Then Sequence (14) is a normal sequence of symbols.
A.G. Postnikov and I.I. Pyatetskiy [12] have extended Champer-

nowne's method and have constructed a Bernoulli-normal sequence of
symbols for arbitrary p. Here a theorem similar to the criterion

mentlicncd abive was used.

kg Al
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In like menner, A.G. Postnikov and I.I. Pyatetskiy [21) con-
structed a norma;:realization of a very simple stationary Markov
chain, ;

‘Finally, A.G. Postnikov and I.I. Pyatetskiy [21] also constructed
the normal realization of a process corresponding to a continued frac-
tion.

N.M. Korobov [1] has suggested a method for constructing normal
sequences of symbols#* that is based on the utilization of normal
periodic systems (the concept of normal periodic systems was evidently

first introduced by Martin [22]. Yu.N. Shakhov [24] used a generaliza-

“tlon of this concept suggested by N.M. Korobov [23] to solve the

problem of constructing & normal realization of & very simple Markov
chain (Yu.N. Shakhov imposes stronger limitatiqns on the transition
probabilities than are imposed in [21]). We shall not be concerned
with the method of normal periodic systems in this monograph.

N.M. Korobov [1, 25]) used different methods to construct complete-
ly uniformly distributed sequences. L.P. Starchenko [27] succeéded 1n
constructing a completely uniformly distributed sequence.

With the ald of a completely uniformly distributed sequence, N.M.
Korobov solved the problem of constructing a normal sequence of sym-
bols (1]}, and gave a multidimensional generalization of this problem
[(25]. As we shall show 1in this monograph (§17) a completely uniform-
ly distributed sequence may be used to construct a sequence that is
completely distributed with respect to a function F(x).®#

The aim of the present study is to examine & portion of the ma-
terial that has accumulated in this “leld from the viewpoint mentioned
above.

1 wish to thank all those who helped me in thls work.

-9



§1. Nermal Sequence of Symbols

ansider an infinite sequence composed of the terms 0, 1, ...,
g-1,
a.-:,a.,...u.... ‘ (1)
We take any natural number 8 and construct a sequence of s-tuples
[(CUNIIRY ATC NN SR PR (72 TTSTRIN 7 Iy R (2)
We call Sequence (2) a caterpillar (of rank s) of Sequence (1l).
Let A& = (61... 65) be any s-tuple (we shall also use the word combina-
tion) consisting of the symbols O, 1, ..., g — 1. We let NP(a., a) or
NP(A) be the number of occurrences of the s-tuple A prior to the Pth '
term of Sequence (2).
Definition. We call Sequence (1) a normal sequence of symbols if
for any natural number s and any s-tuple A the limiting relationship

is satisfied.

ia. Champernowne's Example of a Normal Sequence of Terms

Pollowing Champernowne [18] let us construct a normal sequence of
symbols.,

We let s, be a sequence consisting of all r-digit numbers written
in the g scale; here we also consider a combination of symbols begin-
ning with a zero to be an r-digit number. We take the numbers in their
natural order. For example where g =

| 5, =0'1
sg= 00°01° lO:l .
4= 000°001°010°011°100°101°110° 111

e ¢ 0 ¢ o 0 5 4 0 0 0 T e e e e

In writing the 852 we will place apostrophes between the r-digis-
numbers, as shown. Let us prove that the sequence

‘l‘.’."“‘n,

« 10 -
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is normal (since L is a group of terms, and not a single term, the
notation is s&mbolic). We must show that each p-digit combination of
symbols (p 1is fixed) Ap in the caterpillar of Sequence (1) is en-
countered with an asymptotic frequency 1/gp.

We let:

Sr be the sequence 8185..¢ 85
X, be the number of base-g terms in 8,3
X, be the number of base-g terms in S.;

8y be the number of appearances of Ap in 8,

Gr be the number of appearances of Ap in Sr;-

gr(x) be the number of appearances of Ap among the first x terms
in 8,3

G(x) be the number of appearances of Ap among the first x terms

of Sequence (1).
Ilet Ap = (61620.. 6p)o
We must show that

Gx)~ {.—+o(xx

Ir Ap enters into a sequence s,

separate its terms, we shall say that Ap enters undivided; if an

apostrophe separates the terms of Ap we shall then say that Ap enters

divided. For example, when g = 2, A3 = (101) enters 83 undivided in
100*' 101' 110' and divided in 110' 111.

so that apostrophes do not

If r < p, Ap cannot be contained un¢1vided in 8. If r > p then

8, is contalned undlvided in s exactly (r=p + 1) g™P times. Ac-

tually, there are r —- p + 1 ways in which Ab may enter undivided into

8.1 The firat term of AP may be the first term of an r-diglit number,

the sec>rd term, etc. If we select a position for Ap, we may take all

the rem:ining r - p terms arbitrarily. Thus AP is encountered in L

- 1]l -



a combination undivided by apostrophes exactly (r —p + 1) gr-p times.
What 1s more, 8, contains gr apostrophes. When an apostrophe 1s given,
it cannot separate more than p different Ap. As a result, no Ap di.
vided more than pgr times can be found in 8., Thus

GG —p DO,

where r — o,

But
Xp mm fg'.
. Consequently
Xy
&r= r + o(x,).

Moreover N

’ ’ ’

G=Fa+00) Xom ) 20

=] so)

Thus ’
G= ::-;' + o(X,)

Let us evaluate g.(x). We assume that X 1s found in the number
"n—l’r-a"' P1Po of sequence s,. It is clear that

r-y
x=rY g+, 0<ICI.
=

Ve recall that 4, in any r-digit number s, mey ocoupy r — p + 1 air-
ferent positions. We let g, (x) be the number of appearances of 8, 1n
undivided form among the first X terms of 8, in a position such that
the first term of 4, coincides with the kth digit of the number. If
k> r-—p+ 1 such a position does not exist and grk(x) = 0. We shall

prove that where k< r —p + 1
(e §
z..(x)-c"""‘(g M“"""“-i-"). <rgld
R4l

(for t:.> case k = 1, the sum vanishes).
The structure of an r-digit number s, in which the first term of
- 12 -
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Ap coincides with the kth digit of this number may be represented a:

follows:

k-ltermsa‘a‘“' % re—p-l=—2t tejrmsf

We now count these numbers up to (and including) the number

* 'Preye « o Pretbm1) Preke .+ « Dreihiom1) P
k—1terms p terms r—p<-1 —kf:em_s.

_ 1) 1f pr_kgp"l + p!,_k_lg""2 * oot 4+ P (gype1) > blsp"l + 623"‘2 +
+ 00 + ap it 1s evident that the quantity sought will equ_al the amount
of these numbers up to and including the number
Proyeo e Propoy bt Hg—1... g = 1"
It is clear that the last r —~ p + 1 - k terms may be taken ar-

-bi'crarily. The first k — 1 terms may be selected in
=1
for=ik=1)
ways. Thus in this case the quantity desired will equal
et
g Y pger-n s 1),

o peint)
2) 1t pn_kgp"l + pmsp‘z + e+ Pr(kepal) € 613"‘1 + azsp'z +
+ cee bp, the desired quantity will equal the amount of these numbers
up to and including the number
"Preyt s Praipep Pror-n— 13y Bpg = 1.0 g —=1",

*

Thus in this case the number sought will equal

=3

8r-oﬂ-h E P “t-v-om.

taraih=1)

3) 1f px‘_k‘p_l + px‘_h_lsp-z'!- ces + p!\—(k-o-p-l) - Glgp.l * eee +

6p the quantity of these numbers will equal the number of numdbers up .

to
Dot ++BrothegBretios = Midye R =1 gmleeogml

plus an amount not exceeding g"—{(k+P-1)

since not all combinations
may enter into the last r — (k + p — 1) terms. Thus, in all cases

- 13 -




r~]

zu(x)-n"“‘“"( z n.x"’""‘+°’)ol°'!<l-

formii=1)
Moreover
r=p4} r=s+1 r-3. r~p41
4 . -,
2= Y 3 pfd+0 Y LM
A=} &8 ter={he}) [

Py
=202+ 12+ 0(g)

t=s

In view of the fact that there are no more than o(¢’“ ) divided

by, We obtain

e =L e+ 1-npd+0D).

tep

But
r=31
X == fz P‘e"*'.'o
.. t=0
* r-1 . =3 B
Setr—t=1) s+ 2d .
f.-—lr(x)-"‘ e L +0‘I')-
r~1
Zrr=t=1pg -
v +om-o(¢’2' ;."-‘—3)+0m-°(¢')
o ] t=p

L]
1
[in view of the convergence of the series ‘3? 1.
-}

Thus
3,(:)--%+o(x) for r-eo.

Let the xth term of Sequence (1) be the yth term in s,. Then

S-Xr.l'*‘y.
G(x) = Groy + - (3) + O(1), LOr x =0 c0.
Hence
X,
-etoha L.
G = =52+ L+ 0,
x
OM—-‘-’--I-O(‘).

which Las to be proved.

-1“-
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§3. Application to Uniform Distribution of Fractional Parts of an
) B%pgo'n"e"n"ﬁﬁl'mcﬂo’n

Let g > 2 be an integer, and o a real number,

Let us examine the sequence of fractions {agx}, x=1,2, ..., P,
... » Let A be some half-interval on the segment [0l], mes § the
length of this half interval. Let '

a--‘-;--i- —;%+~- (1)
be a decomposition of a written to base g (we assume that a is irra-
tional, and thus the base-g expansion is uniquely determined.

Theorem 1. A necessary and sufficient condition for the fraction

{agx] to lie on a half interval of the form [.f'. E.'t.!) , where s is any
8-1

integer > 1, and a 1s an integer, 0 < a 533 -1, a= 613 + .0 +

+ by (0 < 61 < 8 — 1), is the presence of the term (61... 6‘) at the

xth position in the caterpillar of rank s of the sequence e g5 ::- (2)

Proof

(-1')--?;--t#%+---+-:++°(“—.‘:—.'+f7,—.‘-+~--).
where O < 6 < 1. Thus
<i)—5<5
We let Np(8) be the number of fractions among the {ag*}, x = 1,
2, ..., P, lying within 8. We say that the sequence of fractions {ag*},
xel, 2, ..., is uniformly distributed on the segment {O1] 1f no
matter what half interval 3 on [0l] we choose the number NP(G) satis-
fies the asymptotic relationship

limf-’PQ-m&

Pooen
when P »,
Thecrem 2. If the fractions [asx}, X=1,2, ..., P, «¢., Where

a 1s defined by Equation (1) are uniformly distributed, then the be .-

. . -
1!

- 15 -




g terms of the number a in (2) form a normal sequence of symbols. Con-

versely, if Sequence (2) is a normal sequence of symbols, then the

fractions {ag®}, x = 1, 2, ..., P, ..., where

B-':g‘—"i";'%"("""

are normally distributed on the segment [0l].

Proof. If the fractions {ag*} are uniformly distributed, then
P+(1/g°) + o(P) fractions 1lie on any half interval of the form

g® g I'

18 encountered in the caterpillar P-(1/g°) + o(P) times, i.e., the

35 &t 1) But by Theorem 1, this means that any term (6162... 6‘)

sequence is normal. Conversely, if the sequence is normal, Ly Theorem

1, P-(1/g®) + o(P) fractions {agx}, x=1, 2, ... P will fall on any

half interval of the type [EE 5-i§l). In any such half interval &

g g
there will 1ie P mes & + O[P(1/g%)] + o(P) fractions (since & may be
approximated with an accuracy of up to 2/@’ by a sum of such inter-

vals). Then

’ - - . — -

INp(B)

: o)

but, letting s approach infinity, we can see that

which was to be proved.

Using Champernowne's example of a normal sequence of terms, we
construct a number a such that the sequence of fractions {agx}, X =
=1, 2, ..., 18 uniformly distributed.

For various problems in Diophantine approximations with expo-
nential functions, see Supplement (2).

84, Criteria for Normality of Base Sequence of Terms

Lot us prove the theorem of I.I. Pyatetskiy (see [20]).

Theorem, Let there be a sequence consisting of the terms O, 1, ...,
- 16 - )
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g terms of the number a in (2) form a normal sequence of symbols. Con-

versely, if Sequence (2) is a normal sequence of symbols, then the

fractions (agx}, x=1, 2, ..., P, ..., where

amdiit,

are normally distributed on the segment [01].

Proof. If the fractlions [agx] are uniformly distributed, then
P+(1/&®) + o(P) fractions lie on any half interval of the form

53 & +sl) But by Theorem 1, this means that any term (8;8,... &,)

g 8
18 encountered in the caterpillar P-(1/g®) + o(P) times, i.e., the

sequence is normal. Conversely, if the sequence is normal, Ly Theorem
1, P+(1/g%) + o(P) fractions [agx], x=1, 2, ... P will fall on any

half interval of the type 55 2 +sl

g g
there will 11e P mes & + O[P(1/g%)] + o(P) fractions (since & may be

. In any such half interval §

approximated with an accuracy of up to 2/g® by a sum of such inter-

vals). Then

- - o)

but, letting s approach infinity, we can see that

Pgo

=mest,
which was to be proved.

Using Champarnowne's example of a normal sequence of terms, we
construct a number a such that the sequence of fractions {ag*}, x =
-1, 2, ..., is uniformly distributed.

For various problems in Diophantine approximations with expo-
nential functions, see Supplement (2).
j§:70r1ter1a for Normality of Base Sequence of Terms

Lat us prove the theorem of I.I. Pyatetskiy (see [20]).

Theorem. Let there be a sequence consisting of the terms O, 1, ...,
- 16 - ‘




g-1,

oG, (1)

such that there exists a constant C such that the inequality
Ny (A
Eﬁ-%%l<<c£%.
X-sc0

will be satisfied for any natural number s and any s-tuple A (or As)

consisting of the terms 0, 1, ..., g — 1. Then Sequence (1) is normal.

We shall follow the proof given by I.I. Pyatetskiy (see [24]).
His proof ylelds a stronger statement: a simpler argument.may be used
to prove the validity of the criteria.

Lemma 1. Let us discuss all possible l-term combinations of the

terms O, 1, ..., g — 1 (there are g> of them). Let r be a natural

number. The number of combinations in which we encounter any fixed

term a number of times equal to 1(1/g) + <(1/r), || > 1 will not
exceed gi(ru/h;?).

Proof. The number of combinations in which the term a is en-

countered precisely k times will equal
clg—=n"
since this sign may be arranged cf ways in k places, while the
remaining 1 — k positions may be ;illed with any terms except &. The
number sought in this lemma equals:
o= I cg-it=g I -

- iar |k |55
This qwantity is found by a well-known method. Since summation 1is
carried out over those k for which (ru/!?)[k'—‘l(llk)]n >1,

o< FZa (=i () (- =
=d s (la—ar(Qfared)).

where

- 17 =
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- Fel(LY (1= Ly
5 g‘.'d(”)(l =) e=1,2,3,4,

Let us compute s_. We differentiate (with respect to x) the identity
. . ,
/ - }_‘l-l- __1. 2
l%cfx’ (-%) (x +1-2)
and multiply by x; we then obtain the identity

4
3 icix! ( - -"-)"' -z (x +1 -—-3-)"'.

i=e

Differentiating this last identity and multiplying by X, we obtain

’ ) - -
A Efcw(l__;_)' 1 zx(x-i-l_%)l '+l(l—l)x‘(x+l—.-"-)' ’

Repeating these sfyeps ‘ e -

r(e1-2) rag—na(s+1-4)"+
=)=z 4+ 1—-1) "=
:
- 3 el (x+ 1= L)

I~e

and once again repeating this procedure we obtain

) 1y-1 1\
(x4 1=3) - (s +1-2Y"+
+o0—Da{s+1-2) "+
+3I—NU—D {2+ 1-%)“‘4.

+UI—DU-(x+1-3)"+

F =)=~ (s 1 =) "= é #Ole! (x4 | = 3Y,
LA s

Assuming in these formulas that x = 1/g, we obtain

1.
‘l-l’it

S T

t {,
s,-l-‘-+l(l—l)?-.

FORNERPIT

1 1 {,
&-‘-;-!-3‘(’—“‘-;“!"(‘— N=2z;
o=l + U~ 1)+ 80— DE=DE+

+I— N —DU— i l
- 18- *




O<g' Tt 5+~ Ng +6IE—D—D F+
+— =D =-Y 5z —
—41';‘,--121'(1-1)‘-‘,--41'(1-1)(1—2);‘;--&-

+ 85 +68( — 1)~
_414;“.+14;{.)_g’;:-l--:l-(l—7-;--}-31%—61;’;4( 125+ |

b o)
A,
g Tl (1= +30-25(1-1)).
Since (1/g)[1 ~ (1/g)] < 1/4,

o<ati(i+ Mt cr' s,

"which has to be proved.

Let the sequence
& =qy, Qy, q,'.... ' (1)
satisfy the condition of the criterion. We shall first show that the

equality
“mﬁ’)—(‘.) - —’- .
Pace &

holds for the number of appearances of any term & among the P tom.
of Sequence (1) (we let NP(a) stand for this number). We take 1 > 1
and combine terms into groups of 1 components

Qs .. A1 Arpyo. Qoo ee '
We introduce the natural number r. A system of 1 terms is called
"good" if the term & 1s encountered in it a number of times 1(1/g) +
+ 8(1/r), lol < 1; the remaining systems are called "bad." We let L(P)
be the number of good systems, and M(P) the number of bad systems up
to the 1(P/l]-th term of &

7=t me
The terr: & occurs 1(1/8) + 6(1/r) times in a good system, and 61 t .

- 19 -



in a bad system. Thus, & term a appears up to the Pth term of o a number

of times
Np@=L(Prz+ L)L+ 6uMP) + byl m
=(F—ME+6) Lt (G —uE+6) 04
+ OM(P) L+ Oy =

=2 P P ( I _gd
gt 0EMP (- =01+

+0 L+ 005 o
Here 0 < 6, < 1 and |a3| < 1. The occurrence of .a bad system is the
occurrence of a bad combination in the caterpillar of rank ;I._. By the
hypothesis of the theorem, each bad combination is encountered, when
P > Py, no more than 2CP-(1/gl) times, and by the lemma there are
O[g-l-(ru/}_a)] possible bad systems in all. Consequently
MBI CPg o =GP -

Thus, the term a appears prior to the Pth blace a number of times
I AL oA r
Nr@=Z+2 0+0(PT+PT+PL)+ 00
Hence
r={Npla) 1] .14 "
llm‘—r——-‘-l‘-;--l-O(T)-l-O.(%).
P
Letting 1 — » and r — » we find that

lim —-P--N’ @
Pesto

We take s > 1 and any s-termed combination A = (61... 8,) made up of

1
-—
&

the symbols 0, 1, ..., g€ — 1. Let us consider the sequences

. .
Qe dge0e8y Qgpyoeelgyene

Ta Lol PRRY - RN - NP - PO

7"'&—0.«.+;...a;.-; a.....a;.-;...
Each c. tn.se sequences may be considered to be a sequence composed

-20-
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not of g terms but of gs terms, considering each group between apou-
trophes 'ak... ak+s-l't°be a single term; A 18 such a fixed term. Tt
number of occurrences A among the [P/s] terms of the sequence TJa we

call A&P/s](TJa). Clearly

s-1 |P
Np(d) = zlA.[ s ] (T'a)+0s).

I=0
For each of the sequences TJa the conditions of the theorem will
be satisfied. It 1s clear that the conditions of the theorems will
hold for these sequences if they are considered to be sequences com-

posed of g terms. Thus

lim =, j=m0l,...5~1
Psoo 8
Hence
Np(d) St 1
Mn—jr- ho“‘-'f
P00

Thus the theorem is proved.

§5. Application of the Criterion of Normality for Sequences of Terms

As A.G. Postnikov has noted [19], using I.I. Pyatetskiy's cri-
terion, it 1s possible to simplify the proof that the Champernowne
sequence is normal.

It has been shown that

e 1

Let X, <X<Xrar

Nx(d) er—u(h) N"'r-n ™ x,,,
X - <X <—xeex
Bt -
X X, +(r+ gt +1
S Rt <1+ gy
Thus

-21-
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Ny (8) R 1
lim-ifv-—-<(l + 2 r

X=s00
Using the criteria of I.I. Pyatetskiy, we obtain

¢
Xesc0

This discussion also indicates that 1t 1s possible to give an
arbitrary order to the r-digit numbers contained in 8. in Champer-
nowne's construction, i.e., it 1svnot necessary to use the natural
order as Champernowne did.

§6. A Second Definition of the Normal Sequence of Symbols

We call the infinite sequence consisting of terms O, 1, ..., g - 1
weakly normal (I have deliberately translated Borel's term ([3], page
193) "simplement normal" as weakly normal) if the asymptotic frequency
of occurrence of each of the terms 0, 1, ..., g — 1= 1/g.

The sequence made up of the symbols 0, 1, ..., g -1,

Q, Gy, Gy, e.s (1)
is called weakly normal to the scale sk (k 1s a fixed natural nu.ber)
if when the terms of the sequence are combined into groups of k mem-
bers
(a,a....a.)(a.,..,a;,....a,)... ' (2)
and each parenthesized term>is considered to be a symbol in the alpha-
bet consisting of gk elements, we obtain a weakly normal sequence.

Definition. Sequence (1) is called a normal sequence of symbols
it rof any natural number k the sequence i1s weakly normal to the
scale gk.

Theorem. The definitions of normal sequences given in §§ 1 and 6

are equivalent.
This theorem is due to Pillail [30, 31]). A somewhat less complete

result is given by Niven and Zuckerman [32] (see [33] as well). There

- 22 - .




18 & proof of this theorem in a paper by Maxfield [34]); I d1d not
understand it, and have given another proof.

We shall prove that a sequence that is normal in the sense of the
definition of this paragraph is normal in the sense of §1.

Let A be a fixed k-term combination of the symbols O, 1, ...,

€ — 1. Let A > k be an increasing natural number. We use all possible

A-tuples consisting of the terms 0, 1, ..., g - 1.
(bxb.. ..b‘). .

We assign the "measure" l/gA to each such object. To some

7 set ¥ consisting of the various A-tuples we assign the "measure" us,

equal to the sum of the measures of the objects entering into the set.

We write each A-tuple as follows:
Oree o) s basr)e e (Bacnsr--.04)

and calculate how many times the element A will be found in this se-
quence. Let I, be the set of such elements in which A is encountered
v times,

Lemma (Markov). When A — o

1-u=.+2~p"-.+...+(A-k+1).,.:,..."--“74-;-.,(5).

The proof may be found in [35], Chapter 6.

We let 1‘1(}:) be the number of occurrences of some set of A-tuples
£ prior to th: 1_1_:2 term of the sequence

J (@1...84) (GAsr. . Bg4). ..
Let P= Al + 7, OKPr<aA-1,
Np(8) == Ty (B) + 2T (Zg) + -« - + (A =k 4 1) Ty (Ba-aes) + O (I8) + O}

From this and from the hypothesis of the theorem it follows that

B[54 -o(4).

Pty

\ ()
Letting A approach «, we obtain w‘ !—’5,-(;-)---:.-. which was what we were

to prove.
- 23 -




Conversely, let there be given a sequence normal in the sense

of §1 '
Gy, By, 00y GPyocs (3)
We combine Sequence (3) into terms of k elements each
R W (4)
where gl - (a1+(;r1)k’ cees ak~1+(lgl)k)’

We shall prove that Sequence (4) is normal. We let w = (Bl}.. Bs)'
where B, = (6&1)... 6&1)), i=1,2, ..., 8, while the 621)_are taken
from the terms 0, 1, ..., g ~ 1.

We let ﬁb(w) be the nuqber of appearances of the term w prior to
the Pth term of the sequence .

(Arse. A)(Agees Ausd)e e (5)
we let 0 = (s{)... s{})... s{8).. (%)),
It is clear that

N () < Npa @)
Hence

Fﬁffﬁﬂﬁ. P
<t

P P
By the criterion of §4, the sequence is normal. This means that it is
weakly normal. The fact that k is arbitrary means that Sequence (3)
satisfies the definition of normality given in this section.
Let a be an absolutely normal Borel number (see the Introduction).
Let the base-g expansion be as follows:
c--'-\‘--l-%-l:...

The base-gk decomposition of a will be '

-l+...'+c. a."tl+...+: ’
K~ .-...—————-+ +,..
F o > .

By the conaition for w;ak normality for the base ¢k un& combination
(bl... b,) will be contained in the sequence
(a....ad@......l.)...
-2 -




with an asymptotic frequency 1/sk. This means that the sequence a)8,...
is a normal sequence of terms.

§7. A System of Mutually Normal Sequences of Terms

We introduce here a concept due to N.M. Korobov ([36], page 363).
We are given integers 81s Bps cees By larger than or equal to

two. We are given the system of infinite sequences of terms

L X TR
Gy == (gy Oag o« o

Gy Qpy Qageso s * (1)
where the sequence ay consists of the symbols 0,1, ..., gy - 1( = 1,
cess K)o
Lets 21. 'I'ho sequence of matrixes

A Bygeeelyy O1g < oo Qu4y GipeecBiprg=y
Ogy...0y Ggg o oo Oggyy Vs Ogpso.Oepagay
By oo Upy Gag o o« Bagey Qpg o« « BaPos-y (2)

we call a caterpillar of length P (rank s) of Sequence (1).
We take any matrix

(T
amf i),
Oa ... bue

in which the Jth row is composed of the symbols O, 1, ..., ‘J -1,
The numdber of appearances of &g in the caterpillar of length P of the
system of sequences (1) we call NP(A'). We call the system of sequen-
ces (1) mutually normal if for any natural number s and any matrix

)

Np(ay 1
o Pyt

The theory of mutually normal sequences of terms reduces t':c' 2

t
theory of normal sequences of tcm‘;
wWe shall consider any column t:;l
k
0 SbJ 58: - 1, J - 1, 2’ ese K. It is clear that ‘1. ‘2’ evey 5

—25-
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such terms. The system of sequences (1) may be considered to be a single
sequence

| TG B e (11)
but where the terms are taken from an alphabet containing 3182"' 8y
symbols, It is olear that the mutual normality or the lyueom of so-
quences (1) is equivalent to the normality (in the normal sense) of
the auxiliary sequence (1'). From this there follows a theorem.

Theorem. Let the system of sequences (1) be such that there

exists a constant C such that

lim N»(A:) c .
'-bn < ... lﬂ'

for any natural number s taken or for any matrix 4, considered. Then

the system of sequences 1is mutually normal.

This is a possible method for constructing a system of mutually
normal sequences. The normal sequences constructed of 8y By terms.
Each term 0 < a < By B3 corresponds to a column of k rows (the
Jth row consists of the numbers 0, 1, ..., ‘J—l) and the initial row
~ 1s expanded into k rows by this correspondence.

' " Example. Let € = 2, g = 3. We establish the correspondence

0 1
O (f)o1 = (8)- 2 (2)- 3= (1) 4=(9)-8 ()

We use 2 Champernowne row for six symbols
0'1'2'3°4°5°00°01°02°03"04°05"10°11°12°13°14°15°20°21° 22°23°94" $5°30° 31°32
33°34°35°40°41°42°43°44°45'50"51"52°53'54'85" . . . .

It cori'uponds to the system of sequences

0'1°0°1°0°1'00'01°00°01°0001°10°11°10°11°10°11°
00112200 000101020200 0001 01 03 02

00°01°00°01°00°01°10°11°10°11°10°11'00°01°00°01"
.10101111121210101111 12123020 21 31

00°01°10°11°10"11°10° ...
292220203121 22...

The system of sequences obtained is mutually normal.

- 26 -
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8. The Problem of Constructing & Sequence Mutually Normal to a Give:.
L‘M

The material presented here has been taken from L.P. Starchenko

(37, 38].

For a natural number g > 2, let us consider a normal sequence con-
sisting of the symbols O, 1, ..., g — 1,
. ' LY ’ _ (1)
It is necessary to construct a sequence of terms

W o (2)
such that the system of sequences (3)
88 ...

Y (3)

"will be mutually normal.
We shall first prove that for any natural number 8 there is an
¢(s) such that for any s-term combination 8,

Np-(8)=Np-(8,) _ ¢
—ror <g

_ provided that P" > &(s) and P' — P" > P"

Actually
Np-(8) Npels)

Np By —=Npe(dy) —“p — 9

| o 4

fan=

»

Holdy NeG) Mot ity
S » + » »

t—t 1-=

” ’

According to the Cauchy convergence criterion there exists a
P(s, 4,) such that for every P' and P" larger than P(s, 4,) the in-

equality
-t

holds. By the normality of the initial sequence we have where P" > S(Ag)

.

Np-(8)
._;....<%,
- m -

b
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We take the largest of the numbers ;(A‘) and P(s, A,) taken over all

possible A, as o(s).
'faking these inequalities into account, we obtain

S AR 51 55 et e

1 1
Npo(8,)~Nae(B) "'""F_
oy < '. Iy ’ +NP‘(A3) ‘-;
1 (¥ Np-(8) 4 -
-7(r-r+‘)+ 7 <,‘(l+r P')+f<"

We now proceed to the construction: to do this we will "distort"
the initial sequence to an ever greater degree,

In the first line, we write the given normal sequence (1), and
in the second a sequence that we can prove is mutually normal with

respect to the given sequence.

"" "“""} 0th. series

"

"t ~--‘-u»_'—';16+x--— 2ot0+8 o) +3 + o + SBaimy

Soimel e s Smin o1 Samm+s ¢ - Teoinon Seoinios + o o 8570 } -8t series

- JRE - L S w.-m'-.ar.,\....m.,}
Rloa: - GG 4RG -« Wi Ss 30d sertes

‘.....C...D . . A A A R R NN TN

where m‘)' = &(2),

SR " IW—D+ 1 (c;_gg,.t;f).
while Vg is any natural number for which
KT FE Y+ -2
$@>e ()
¥We shall prove that we have two mutually normal sequences.
We take any k-column matrix (k is fixed)

''''' e

Let

where v = 0, 1, I XXY) V.+1 --10
We let Gy be the number of times Zk appears in the caterpillar
. o8-
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of rank k of length X for the described system of sequences.

Let 8 > k., -~ .-~

Prior to the number F('?k) - 1 » the combination Kk is encountered
some number of timee. We let this number be L. The appedrance of 'Sk in
an s-series 1ndicates that in the corresponding positiona of the
caterpillar of rank 2s of the initial sequence there appears one of
the gz(H) combinations having the form '

(A gs.ml‘ .
' KETmLs e .

(This is valid with the possible exception ot the lnt 2s mmbcu of
the series.) In each section separated by apostrophes, such a combina-
* tion appears less than (0/32')Q times, where Q is the number of sym-
bols in this section; but the number of such combinations equals

ge(H), and thus the number of occurrences of Kk will dbe less than
s2(8—1() WSQB - cvsak
Ox L+ +o
. < pr @
The quantity 0(s“) appears at series splices.
.&<.£. L., o{.—)

it
82/X = 0, since X > C2° where C 1is some constant.

Thus

1‘: x‘;:'
Let

X <P < Xnrs

. where Xy =2X,+1.
&(—‘lﬂ...m M"%,ﬂ'

xl#l x‘-ﬂ

'::'.:!-.%er"’“o

Yo &)
=<z
.29 -
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t

and consisting of 32 symbolq

fora S, Bblari

Since the criteria for mutual normality of the two series have
been satisfied, the required system of sequences has been constructed. !

Let us construct an infinite number of series mutually normal to s
the given Sequem':e (1) . We construct o;xe sequence mutually m;ml to ;
Sequence (1) | , |

U
AR ' (3)

Sequence (3) 1s a nomi sequer;coA in which the terms are taken

from an alphabet consisting of 32 elements (2 column is considered to

be a term). We construct a sequence mutually normal to Sequence (3)

.‘...‘oco“-co

' 858902...1.....': .
(8 Y N S (%)
Sequence (4) mey be considered to be a normal sequence in which the

symbols are taken from an alphabet consisting of g“ elements. Ve con-

struct & sequence mutually normal to Sequence (4), eto.
§9. Eamouni-uog; Sequences of Terms

Let there b§ given two positive numbers p and g such that p + q =
- 1..101: there be an infinite sequence consisting of symbols 0 ad 1,

Y S (1)

Let s be any naturel number. We write Sequence (1) in the form

of 2 "caterpiliar" )
(0300 0 (Be0ae - e Soe)s o - (80 8P01e s SPpomt)see (?) i

Iet A = (61... 3,) be any s-tuple consisting of the symbols O z
and 1. We let Np(4) de the number of cocurrences of the term 4 prior
to the Psh term of Sequence (2). We call Sequence (1) a Bermoulli.
normal sequence of symbols if for.any natural s and any s-tuple A =

- (610.- 6')’
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Nola) ' _
Jm == = ple-l,

where J is the number of ones among (61..,; 6,).
Let us prove the following generalization of 1.I. Pyatetskiy's
criterion (see [12]). '

Theorem. Let the sequence of symbols 1°and O
‘ G o8y, 8y 0g 000

be such that there exists a constant C > O such that for any natural

number s and any s-tuple A = (8,... 8,) consisting of 0 and 1

" Np'd)
lim ==
pose P

_¥here J is the number of ones among the 5;8,... &,.

<Cple-!,

Then Sequence (1) is a Bernoulli-normel sequence of terms.
The proof is similar to the proof of the theorem in §i.

IftA = (61... 6.) is some element consisting of zeroes and ones,
we then let pA = 'p"q"‘d where J is the number of ones among the 61... 6'.
We will call the quantity uA the measure of the element, If ;l some
set of different s-tuples we assume that ur equals the sum of the
measures of the multiple-term elements entering into the set.

Lemma 1. Let r be a natural number. Let I bde the set of. those
1-tuples in which the number of ones J satisfies the inequality |J -

- 1pl > V/r.

Then
o<s
As in Lenmma 1 of $4 we find that ¢ = us and equals
Q‘
o Actprei-.
TR

Carrying through the proced.re used 'n Lemma 1 of §4, we obtain the
evaluation n«do‘d.
- 31
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Lemma 2, Let r be a natural number, A some s-termed combination.
Let 1 be a natural number.

Let us consider the ls-tuple consisting of symbols O and 1

@1a5... 8,840 Qeae v Gy ser o0 B14)

and let us group it into s elements such that ve may use the repre-
sentation

6,y ..b),

where b, = (a(k-l)s-l-l“'. a,,) (for s = 1, both forms are the same).

1
We let Ag— be the number of occurrences of the combination A Me
bybs... b,. We let R be the set of those 1s-tuples for which IA% - 1l >

> 1/r (r is_any natural number). Then
”

RS-

Proof. The measure sought equals

[
2 Clpap(l —pay-2.
la-b1> o
[4
Repeating the argument used to prove Lemma 1 of $4, we obtain the
statenment required.

Let us now prove the thoor:n. Laet the conditions of the coriterion
be satisfied for Sequence (1). We group the terms of Sequence (1) into
8 elements

[ N N S (3)
where b, = (‘(n-l)a-c-l“' ‘m)‘ From the P terms of Sequence (1) it is
possidble to form (P/s] terms of Sequence (3). Let us take a natural
nusber 1 and group the terms of Sequence (3) into elements of 1 ocom-

ponents

Oyby...0 bisree b (3)
We select a natural number r, and will call an l-tera growp
€00d 1f A occurs in 1t & number of times l{ua + 6(1/r)], |6] < 1;
we shall call it bad if this 1is not the case. We let N([P/s]) de a
- 32 -



number indicating how many times a bad group is found among the firnt
1[[P/s]/1] terms of Sequence (3). Then a good group occurs & number o

times

£ —m( [{i] )+om

with an absolute constant in 0. A good group introduces l[ua + (6/r))
symbols, while a bad group yields no more than 1, Thus the number of
times the term A occurs prior to the [P/s] position in Sequence (3)
is

Bllm s 12) (£-u([2]) o) 4 (£]) s00

where 0 < 6, <1, 0(1) occurs owing to the fact that there possibly is
an incomplete group and thus there is an absolute constant in 0. Each

bad combination belongs to a systemR; thus
Y
- N
M ([ <¥ oy

But when P > Po by hypothesis
N.[£]M<2C-pﬂ-t°.

Moreover, by Lemma 2, uﬁs r“/h':_l_a. Consequently when P > Po

4[51(.,_;(,A+'7)+o(p"7)+o(o.

a

oo
——L——u<7+o(-‘-).

| =

When 1 approaches infinity we obtain

Tim
Peroe

Alﬁ Q)
L EECRN PR

When r approaches infinity we obtain

N



3

S

g

lim A& _2)
P P

We let -‘1"1&, J=1,2, ..., 8~ 1 be the sequences

Tl. Ll TY R T T (u)
We have

tim ey
Poren —P—-—-M. l-o,l..... ‘-lo

- But 1t 1is clear that

[ Lt}

LA
: Nrm-lZA[-]a*-Hom
-l

And from this it follows that

Nol®) et
'l!.l‘l: [ ’l vd,

which was what we were to prove.

We need a concept that is more general than the concept of a
Bernoulli-normal sequence of terms.

Let there be given g positive numbers Pgr oo p‘_lz let Po+ Py +
+ oo + p‘_l -1,

Let us consider an s-tuple made up of symbols 0, 1, ..., g -1,
a=(8...8,). '

We let uA de the quantity Pgre- Pgg It is clear that

§M--(n+.--+h-:r-l-
where the sum in the left side extends over all s-tuples.
We call the sequence composed of the terms 0, 1, ..., g -1,
Oy p... (5)
a.normal realization of independent trials if for any s and any com-
bination A the relationship

Np (8)
Am =,

-3
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holds.
The criteria are valid.

Theorem. Let Sequence (5) be such that there exists a constant C

such that

T e < Cpd

Ped P

for any combination of any length. Then Sequence (5) is a normal reali-

zation of independent trials.

The proof generalizes in obvious manner the proof of the criterion

for Bernoulli-normal sequences of symbols,

§10. Construction of a Bernoulli-Normal Sequence of Symbols

Here we present the construction of a'Bernoulli-noml sequence
of symbols given by A.G. Postnikov and I.I. Pyatetskiy (see [12]).

We use an idea due to Champernowne [18],

Let p (as before) be the probability for the ooccurrence of an
event in each trial. We take any sequence of rational numbers °x/pr
such that

pulimi, 0<u<H,

P|<3.<P....-’-’-'—-l+o(-:-).

-1
Such a sequence exists for any p, 0 < p < 1; if p 1s a rational num-
ber, p = a/B, we then simply take @, =a, B, = B for any r.

We let 8, be the sequence of all r-digit numbers in the binary
system; & number in which a one 1is oncougxtcrod v times and a zero,
consequently, r — v times will be repeated °:'(5r - ar)”'” times. We
will separate the numbers by apostrophes. For example let 03-- 2,

Bs - 30 Then

3, = 000°001°001°010°010°011°011°011°0t 1* 100" 100°101°101° 101°101°110°110
nonoIrnrIINIIrIutIrIne,

= & - L4 LM EE S
S8 32LL8008 J0 TESLI S, WIITURL IFRis.lldl.

g
*

13
fis

- . s e e e -h g
-‘é. - e ,.-‘* QQ.‘C




QoS , 8,800

is Bernoulli-normal. To do this we must show that any s-termed com-
bimtion in which there are v ones is encountered with an asymptotic
rrequenc& pvq&'v. In accordance with the criterion it is sufficient
to show that there exists an absolute constant C (independent of A)

such that

"-—""”P(As) v

T 5 <G
We let X, be the number of terms in 8. Sr the sequence 8,85...

8,, X, the number of terms in sr(xr =X, + Xy + oo + xr), 8, the

number of occurrences of As in s and Gr the number of occurrences

rl
of ag in Sr. Let us calculate X,. The number of r-digit numbers in
which 2 one is encountered k times will equal cf.; each number will be

repeated “;(Br - ar)”' V times. Thus, there will be

2 a.;("—'“'r-'- K .

r-digit numbers in L
In 8. the A, may or may not be separated by an apostrophe. If

and X, = rb: terms.

. P < 8 then A, camnnot be contained undivided in s,. If r > 8, 4, 18
contained undivided in 8. exactly

(ST S
times. Actually, there exist r — s + 1 way; in which 4, can occupy
an undivided position in an r-digit number (the first symbol of 4,
may coincide with the first term, with the second term, ..., with the
r— 8 + l-th term of the r-digit number). 4, occupies s places in this

number, and in the remaining r — s places we may place f ones (0 < £ <

L
r—8

zeroes. Such an r-digit number must repeat a;"‘f (8, - czl,)""""f times
(to it we add v ones from A, and f£). Thus, A, is contained undivided

€r-s)in¢C ways, while the remaining places are filled with

in .t‘ exactly
- ~36 -
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[ £t ] )
r=s+ N NC "B —ay! =
f=0
r-8

-(r s+ e} B —ay— 2 Cloyol (B —ay =+l =

fwo

-v (r—s-+1) a; @ —a )8

times. s, contains Bi apostrophes. A gliven apostrophe cannot separate

r
more than s different A, . Thus A, is contained divided no more than

O(Bz) times (_s_ is introduced into the symbol O since 8 does not in-

crease).
Thus,
&=(r—s+ B —e)r " +0@) =
- T AN g, \ f=v 0 e\ s, \
) (=) romm e () (1 =3 "ot
Since
[P a,\ I~ .
) (1 =) =pe—+om.
Then
&= X P ¢ + 0 (%)
Purther
(4 [ 4
G- zg..-f-O(r). X.-zx'.
A} &
We obtain
G,
m =
Let

N PN,
then N.(a.) < G and (r - 1)p%1 <
P\"s/ = "p Pl = xn—l' .
Moreover, xr =Xt rﬂ:,'. From this it follows that

X, o 8¢
] ’ t ] ”, 1
. — - - i SR . g cammmm————— | e
L4 < Nt N (‘ ' A‘.-.‘-V, <(| NI a:;})x.

while ince ﬁr/ﬂn_l =14+ 0(1/r),
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The criteria are satisfied and our statement is proved.

11. Relationship of the Concepts of Bernoulli-Normal Sequence of
L—Wmaummmﬁur—————-—ﬂ—s

A. Copeland [14] has introduced the notion of an admissible num-

ber. Let there be two positive numbers p and g such that p + q = 1.
Consider the infinite sequence formed of the symbols O and 1,
[T S : (1)

This sequence is called an admis.aible number 1if rox; any natural num-
ber m and for any different nonnegative integers Pys Pos eeey, T less
than m the sequence

| W N (2)
where B, = 'mm—rl‘nm-rz"‘ eﬂ“‘*”‘k (n=1, 2, ...) possesses the

property that the relative frequency with which a one appears in
Xk

Sequence (2) approaches p™ when n = =,

Let us prove a theoren.

Theorem. The notion of a Bernoulli-normal sequence of symbols

is coextensive with the notion of the Copeland admissible number.

Proof. Consider the Bernoulli-normal sequence of symbols
| . (2)
We take arbitrary m and combine the symbols in Sequence (1) into
groups of m components

W S (2)
where a, = (tnt, cees ‘mwn-l)’ t=0,1, ... . The terms of Sequence
(2) are taken from an alphabet containing 2* elements.

We shall prove that Sequence (2) is a normal realisation of in-

dependent trials in which Py = “bi (the b1 range over all possidle m-

- 38 - .



tuples consistiné of the two symbols O and 1; i = 1, 2, ..., 2m).
Let @ = (e;... cg) where cy = (681)... 6&1{), and the 6§1) fre talken
from an alphabet consisting of the symbols O and 1. We let N?(m) be
the number of occurrences of brior to the Pth position of the
caterpillar of Sequence (2). We let Q = (6{1)... 6&1)... 6{5)... 6&8)).
We let Nx(n) be the number of occurrences of {i prior to the Xth
position of Sequence (1). It is clear that

Ne @< Nom @)
Hence

Np(w)
p

:ﬁF K mpcy <y = mpe.

This means, according to the criterion, that Sequence (2) is a
normal realization of independent trials. From this it follows, in
particular, that if w = ¢ = (60... bm_l) where among the 8,... 8,
there are J ones and m - J zeroes,

Np) 3
fm =5 = plat. (3)

Let Py <TPy< ... <1 be nonnegative integers less than m. The
quantity B, constructed for Sequence (1) equals 1 if and only if there
are ones at the ry-th, ..., r, -th positions of the element a, [of
Sequence (2)]. We let = be that set of m-tuples c consisting of sym-
bols O and 1 for which there are ones at positions Pys cees Py

pLapt (p+ )=t e pr.

In view of Equation (3) Sequence (2) possesses the property that
the relative frequency of occurrence of z in it approaches pk. Pus
this 1s the definition of an admissible number.

Let there be given an admlssible number

et (&)

We div'de Sequence (4) into sections of length k

~ -

(G tre- C ) (Baeeotorog)eer !
-39 -
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Let = be some set of k-tuples characterized by the fact that’at spe-
cific positions there are a ones for the elements &, while there':‘are
B zeroes at specific positions (a + B < k). We let T, (z) indicate the
number of times the set T is encountered prior to th; 1th position of
Sequence (5). It 1s easy to establish (by induotion with respect to B)

that for an admissible number

Jim 12 o g (6)

Let A be a fixed k-termed combination consisting of symbols O and 1.
Let A > k be an increasing natural number. We take all possible A-
tuples consisting of the symbols O and 1,
b1y oo o ba)
Bach such element is assigned a measure p"q""’ J, where J is the number
of ones among the terms bl... b‘. To some set ¢ of different A-tuples
we assign the measure Lug, equal to the sum of the measures of the
elements entering into it.
Let us calculate how many times A 1is contained in the sequence ,

s T TR Y ST W YU YRPOUU ¥ S ¢ )
We let o, be the set of those A-tuples for which A is contained in
Sequence (7) v times. '
Iezma (Markov). When A —

i}‘v--n'-a-nm."

where a is the number of ones in A.
Proof. (See [35], Chapter 6.)
Ist P= Al +r, 0CSTrg<A-],

A-asi
Npdm I Ti(e)+0Us)+0(

In vicew of Equations (6) and (8) we obtain ‘
Tm ’%Q—ft"‘-i-c(l)l-‘-o(i-).

=
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When A approaches «, we obtain -

Ly ”p(‘)
!i M‘ -
which is what we were to establish.

§12. Completely Uniformly Distributed Sequences; < -

Let 8 be 2 natural number. Consider the sequence of points
LiL, ..., Lp ..., ‘ (1)
lying in 2 unit cube of the s-.dimensional space
L,-w."...'.x:";f
Let &, be any parallelepiped lying 1n-a unit cube with edges

.

parallel to the coordinate axes. We let IASI be its volume. We let
'NP(A') be the number of points in Sequence (1) with numbers that do
not exceed P, and which lie in 4,.

We say that the sequence (1) is uniformly distributed in a unit
cube of an s-dimensional space if for any parallelepiped the rela-
tionship

holds.
If s = 1, we shall then say, as previously, that the sequence of
numbers is uniformly distridbuted on the segment [01].
N.M. Korobov (1] has introduced the concept of a completely uni-
formly distributed segucnce. ,
Consider an infinite sequence of numbers from the segment [01)
By By Bgy e ' (3)
We choose any natural number s and form the sequence of points in
an s-dimensional unit oube
(ORI P S ) YO (%)
The Sequence (3) 1s called completely uniformly distributed if

for any natural number s the sequence (4) is uniformly distributes
- ul -




a unit cube of s-dimensional space,

More precisely speaking, N.M. Korobov has introduced an equiva-
lent definition, e.g.:

The sequence of real numbers (3) is called completely uniformly
distributed if for any natural number 8 and any set of integers Mys eovs
my, differing from 0, 0, ..., O the sequence

Bu BBy, (5)
where 8, = ('mlal + oeee + My g 3)s 1 =1, 2, 111, 1s uniformly dis-
tributed on {(01] ({} indicates a fraction).

The equivalents of these definitions follows from the following
criteria for uniform distribution due to Weyl [2].

Lemma, For the sequence of points

(... &M, jm1,2,..., 0K, im];2,... 8

to be‘uniromlx distributed in a unit cube of an s-dimensional space,

it 1s necessary and sufficient for the condition

ﬁ P =o(P)

=

to be satisfied for any set of integers By, My, +o., By differsnt
from the set 0, 0, ..., O.

In the next plmph we shall cone
struct a completely uniformly distributed
sequence, and thus establish its existence.

By definition, any completely uniforms-
ly distridbuted sequence is uniformly dis-
tributed on the segment [01] (s = 1),

There exist sequences, however, that are
uniformly distributed on [0Ol] and that are
not completely uniformly distributed: for
examplc, let g > 2 be & natural number; we select a real number a such

4
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4

that the fractions ga.sx) are uniformly distributed (we have ;:onstruct-
ed such an a in this study. Consider the sequence of points in a unit
square: (,&agx)_, ,‘{agx"'l)‘)’,“i{} 1, 2, ... . In view of the self-evident
relationship {ag™?!) = ({ag¥}g) we find that the points (I{agx')., { ag™1)
are located within the unlt square only on the lines drawﬁ (Fig. 1),
i.e., the sequence of points 1s not uniformly distributed within the
unit square and what is more, the sequence (ag®), x =1, 2, ..., 18

not completely uniformly distributed. .

§13. Construction of a Completely Uniformly Distributed Sequence

There exist several methods for cbnstructing completely uniform-
ly distributed sequences.

The first example was proposed by N.M. Korobov [1]. In this
example, the sequence is given as a sequence of fractions of some
integral function whose argument runs through integral values. The
integral function itself is given with the aid of a specially con-
structed power series. The proof that the sequence odtained is com-
pletely uniformly distributed makes use of an evaluation of tricéno-
metric sums with polynomials, and is quite complex. In [25), N.M.
Korobov gave ﬁother method for constructing a completely uniformly
distributed sequence: the sequence is defined as a sequence of frac-
tions {a(x)q* ) where x = 1, 2, ..., and ¢ 1s an integer > 2, a(x) is
a specially constructed integral function. A simpler technique than
that used in {1] 1s used to prove that the sequence constructed is
completely uniformly distributed; this construction, however, cannot
be considered to be simple.

.The construction presented below was carried out by L.P. Starchenko
(e7].

This construction 1s tochnicilly simple, but it is dased on a
profound property of transcendental numbers. L.P. Starchenko {37] i:

) - 43
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given still another construction for a completely uniformly distribu-
ted sequence. We shall discuss this method in §15 of thissmonograph.
Let p, — r-e be a prime number. We let n, = [e(--"'én k) ]+1, k=

=1, 2, ... . We consider the sequence of real numbers

“nz}. ‘21“2). LU (Ihlﬂa). ‘lnz)b {Ina’q "0 ey (““n’)! (1)
{ngIn3), (In2), (In3),..., {Inp)..., {n,In2)..... (a,lnp)...
We designate this sequence as

Se Koo Uz o 00 o

Theorem. Sequence (1) is completely uniformly distributed.
" Proof. Let 8 be a fixed natural number, M, «oep My be integers

not all equal to zero and m = mx(ml, ceey m.). Consider the trigo-
nometric sum

»
S Qeiima s vmugay)
1=

We let TJ -n1+2n2+ cee + Jna. Let

T+ R+ NPT, + 0+ )+ 1)
We write the sum in the form

|S|< c"‘“'u"*""-m»-a' +

[ .,( z‘ul«-.m,¢ u.m,....»)...

rey
+ }3 PLOLL S TRRARES PPNV % T8 TP 2 T o-.»m-a-a +

a-n-oﬂ
+om}]l ‘ [ A et By em)
I=3

+ 2 U I8 0,2 Py g Mg g D) g e IS
o ko=

A L LA N 0(&)]‘.

Since s 1s fixed, the first sum 1s 0(1). We now change the order:

. of summation over the indices f and p. It is possible to make use of

the wall-known condition




.

b
X
I
£
;
£
i

Py

ox 1
Sl

where (a) is the distance of a to the nearest integer -

..o

o e ' . T
1S ( 21 (m.lnp.+--°+ﬂn|"'rn-: +

lose e \ rog
hey
1

m;,_'“mlk‘ Prtee +m[..’*‘| In p/l I+ + 1) (m[_'*‘ Nrgeecocs myln p"._l_‘» +
+O0(h). ’

We shall in addition require the following lemma, which gives a

(]
-

quantitative result of the well-known fact that numbers of the form

e® are irrational, where a is an integer [26].

Lemma 1. Let f, rl,andabe:lnto‘gra,r>r121,a<2yr,n-

= [(101nf], n=(31n (m+ 1)) + 1. Then

ll"';f—“>'37p'=;‘-'&=ﬁ»7'
An odvious consequence of this lemma is Lemma 2:
Lerma 2, Let £ f £, £ and £, be natural numbers. Let H = max
(£, £;). There exists a constant ¢ > O such that

! )
(4>
Let
g, + oo +mlpy i (D

Then

HSH®,
It 1s known that p, < J 1n J and thus K < 32™. Hence (o), oo, o4,
¢, are positive constants)

" .
(5) € D Jen P L O () S entmar W o1 g boer i,
-3

3
But P > o > 0(-1-““) + Therefore
[3|<¢M~ﬂmh'*-o(ﬂ.
By the Weyl oriterion, Sequence (1) is completely uniformly dis-

tributed.
- “5 -
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§14. N.M. Korobov's Theorem
N.M. Korobov (see [1], page 217) has proved the following theorem.

Theorem. If a sequence of real numbers from the segment [01)

..1. Sgpo oo 8p (1)

is ocompletely uniformly distributed, then a sequence of the first base-
- § terms ‘

(“‘li [‘.‘ll"' [ l."l.lno (2)

is a normal sequence of 'terma 0, 1, eees 8~1.

Proof. In fact, for any natural number s, the presence of the com-
bination 4, = (61... 6,) in the caterpillar for Sequence (2) is
equivalent to the fact that the elements of the corresponding temm in
the caterpillar for Sequence (1) will fall within the interval

8y 8141
et WL i=1,2, ..., 8. Since Sequence (1) is completely uniform-

1y dil:ributed,
f ey
i.e., Sequence (2) is normal.

Remark. Since there exist methods for construoting tompletely
uniformly distributed sequences, N.M. Korocbov's theorem yields methods
for constructing normal sequences of symbols.

§15. The Converse of N.M. Korobov's Theorem

L.P. Starchenko has proved the statement that is the converse of
.M. Korobov's theores (37, 38].

I.;ut g2 bo':!a natural number, and -
| it | (2)
be a given normal sequence cowondAot the symbols O; 1, ..., g — 1.

Tsing the method given in §8, we construct an infinite number of

sequences o
,‘:" {'0 "----

- 86 -
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(4=1, 2, 3, ...) such that for any natural number 1 the system of

sequences o
&, [ VY SN
.{”' "”l .:”O see
o8, o, o

UL _ (2)
is mutually normal.

Theorem. The sequence of real numbers

" o, (3)
- (2)_(2) - (2) 7.2\
where a, = O, LU A P (1.e., ay (gj/s) + (‘J /8%) + ...) 18
a completely uniformly distributed sequence.
Proof. By the definition of completely uniformly distributed se-
' quence, it 1s necessary to show that for any natural number s, the

sequence of points

Q. Q. Q... (4)
vwhere
* Qu(on Bopareeo s Bre-th
is uniformly distributed in an o-diﬁmiqul unit oube.

We take an arbitrary natural number 1 and consider the sequence

of points

& @, (5)
vhere Q{2 « (a{d, c&), ceer 2] 1), While the mumber cm 1s de-
fined as follows:

om0, saf’... oY,

Since the system of sequences (2) 1i» mutually normal, every
possidble point Qk(l) in uquanoc (5) will be encountered with an asymp-
totic frequency of 1/

But when we find a point Q{), 1t means that the corresponding

sint - 2plls wishin a cude defined by the system of Lfaegualitles

0 o4 8V S taae <O, 887 . .Y 4-;’,. xm0, 1,...,8==1. (6,

-‘7-
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Thus, the number of times that points of Sequence (4) fall within
any cube of the form (6) will have an asymptotic frequence of l/gl',
i.e., it will equal the volume of cube (6). Since any parallelepiped
lying within a unit cube of s-dimensional space may with any degree of
acouracy be approximated by cubes of the form (6) (taking large enough
1) the theorem is proved.

§16. A Sequence Completely Distributed Over the Function F(x)
Let there be given a distribution function F(x). We associate

the distribution function F(x) and the measure . on a line that is
also in an s-dimensional arithmetic space, as follows: the measure of
the segment A = ["1"2]’ where x, and x, are points of continuity of
the function F(x) equals puA = F(xa) - ll‘(xl); if 4, 1s a parallelepiped
in s-dimensional space whose projections on the coordinate axes are
the segments a{1), ..., a(8) vith ends that are points of continuity
of the function P(x), then
pAgmpdlt), ,  pAW,
Consider the sequence of real numbers
LOVE 9 SR T RN (1)
We take a natural number s and form the sequence of tuples
[PITTUT  "SPSP S, JUUN ~PURY PO, (2)
We write Sequence (2) as a sequence of points in an s-dimensional
arithmetic space .
. QQuQu...tQrreees (21)
where Q, = (a’_, Ggpys *ooo 01”_1). i=1, 2... .
We shall henceforth let A' stand for the parallelepiped A. -
- (Am... A(')) in an s-dimensional arithmetic space such that the '
ends of the interval all), ..., a(®) are points of continuity for the
~ funotion F(x). |
We let Np(A,) be the number of points in Sequence (2) prior to
- 48 -




the Pth number that lie within 4,.
We call Sequence (1) completely uniformly distributed over the
function F(x) if for any natural number s and any parallelepiped A,

N
=5y,
Special cases:
1) Let
. (0 2<0,
e FeelT 0<<T, ,
1 lea

_If Sequence (1) consists of the numbers O, 1, _.‘-‘..,' € -1, this is a
‘normal sequence of terms. )
2) Let
x<0,
‘FM-F“ ?2:<1
If Sequence (1) is made up of real numbers taken from the segment [01],
then the sequence is completely uniformly distributed on the segment
fo1l.
3) Let there be given two positive numbers p and q such that
P+qQqQ=1and |
x<0,
rm—{? ?2’;‘ 1, (3)
Let Sequence (1) be composed of the numbers O and 1. The sequence
completely distributed over the funotion F(x) defined by Equations
(3) is a Bernoulli-normal sequence of symbols.
4) Iet a > 0, p(m) = (a™/m!)e™", where m > O 1s an integer.
Let us consider the following distribution function

;} <0,

Foi=| Ziptm) x>0,

- s (4)
If Sequence (1) is made up of negative integers and is completely i
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tributed over the function P(x) defined by Eqs. (4), we call such a
' sequence completely Poisson-law distributed.
5) Let F(x)ui/l_'f. S a"":d,, If Sequence (1) is completely distributed
-R

over this function F(x) then Sequence (1) is said to be completely
Gauss-law (or normally) distributed.

17. Construction of a Sequence Completely Distributed With Respect
il £0 & punction F(J

x)

If there is a sequence
8 Bgene, &Py .es, (1)
completely uniformly distributed on the segment [01], is is then
possible to construct a sequence completely distributed with respect
to & function F(x). This method generalizes the theorem of N.M. Korobov
($14 of this study). -
Let us construct a sequence of real numbers
Pubucec .., (2)
where 3 is defined by the equation )
FO)<o;<FPr+0
We shall prove that Sequence (2) is couplotoly‘ distributed with re-
spect to function P(x).
We take s > 1 and form a sequence of points in a unit cube of _
« sidimensicnal space

et s

@ QeQseeee s Qoo (3)
where Q, = (“P”‘ “P-o-o—i)’ and the sequence of points in s-dimensional
space .

Lynlaioesbpyenes
where

LO-OP"-M

Wo take the parallelepiped s, = (5(1), vees A(')) where A(") -
- (l“)b“)), 1=1,2, .., 83 .(1), bu), cees a('), b(') are points
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of continuity of the function F(x). The number of points of Sequence
(4) prior to the Pth number that lie within parallelepiped 4, equals
the number of points of Sequence (3) prior to the Pth number that lie
within the parallelepiped 2 = (K(l), ceey K(a)), where K(i) - (c(i),
at)y, 121, 2, ..., 85 ¢(1) = palt)y, a() o pu(1)y, But since
Sequence (1) is completely uniformly distributed within the unit cube,
when P-— » this number 1is equivalent to
. ] N
P|a|=p IH‘(F(U”)—F(c“’»-PM.-
Thus, for Sequence (2)
Np(a)
Jim =S= =ps,,

which was what we set out to prove.

§18. Measure in a -Space of Infinite Sequences of Symbols

We have made use of I.I. Pyatetskiy's criteria to prove that a

constructed sequence is a normal sequence of symbols. For constructions
to come, we shall also need theorems that extend the coriteria of
I.1. Pyatetskiy. There are difficulties involved in proving such
theorems by the method presented in §$4 (the caloulations become cum-
bersome). There is a more flexible method of proof, however, based on
the study of the metric properties of dynamic systems. In the follow-
ing sections, we shall give such a proof for & Pyat.t.ny- criterion.

We will require some information from measure theory (39]. In
the classical theory of functions, a space with a measure is a finite-
dimensional Euclidean space. We shall use a different example of a
space with a measure.

let g » @ bde a natural number.

Consider the set of all infinite sequences made up of the symbols
0,1, ..., g~-1
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We call this set the space R, and we let the letter p designate
the elements of this set. -

We shall consider certain sets of subsets of R (following Halmos
(39] we shall call such sets classes of sets).

Let 8 be any natural number. The set M of sequences in which the
first s symbols &,, ..., &, are fixed shall be called elementary
cylinder sets, and we shall designate them as H(bl... 63). The space
R and the empty set O are also elementary cylinder sets.

We note that two elementary cylinder sets are either disjoint or
equal, which will simplify our study.

. We call a set that may be written as a finite set-theoretical sum
of elementary cylinder sets a cylinder set.

Lemma 1. Cylinder sets form an algebra.*

Proof. We shall first show that the intersection of two cylinder

sets M and M*' is also a cylinder set. Let
M-qm.MM9MT

where "1 and nj are elementary cylinder sets
MOAM = l.g Ll)M:ﬂM' .

But the N, n‘uj are elementary oylinder sets.

We shall now show that the complement of a cylinder set is a
cylinder set. We let CM be the conmplement of the set N. The complement
of the set l(bl... 6') is a sum of sets of the form l(rl... r'). in
which Tyees T,y form all possidble combinations of symbols with the ex-
ception of 61... 6'. i.e., the complement is the sum of a finite num-
ber of elementary cylinder sets. The formula

C(M U My) = CM NCM,.
is self-evident. From this formula and from the fact that the inter-
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section of two cylinder sets is 2 cylinder set it follows that the
complement of a cylinder set is a cylinder set,

Using the rule

La® =1 2 p@nl 3 p(MEb...80) = -3;.

we introduce a function whose argument is an elementary cylinder set
M, w(M). Let us study the properties of this function:
Lemma 2. Let there be a cylinder set M

M= UM,
where the M, are elementary cylinder sets.

There exists a system of disjoint elementary cylinder sets v,, Y,

Ceees Ty such that

1. M= Uy
2. It M/NY o0 theny; S M.

3. M, equals the sum “"73 of those 7.1 that have points in common
with My,

Proof. Let My = (8{), ..., o{})) ant o wmax 6y 100y <8, we
represent ni as & sum s""i of elementary cylinder sets in which the
first s terms cotneide with {1, ..., aﬁi), while the remaining s —
—- 8, are varied in all possible ways. We include all of these sets in
the system Yy» Yoo oo If s = 8, then we place the !1 in the sys-
tem Yyr Yosr ees o One representative from each group of identical sets
is left in the system of sets thus obtained. We obtain the systea of
sets required. In fact, the sets v, are disjoint. Let us check all

the assertions of the lemma in turn:

1. By construction, all the "1 'U'VJ . , While ll-utli.

2, Two oylinder sets are either disjoint, equal, or one is con-
tained ‘n the other (here the set contained is that with the smaller
number of fixed symbols). ‘

3. Those Yy eces 'vn that enter into the rmnnution of n;
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a sum g“i of ‘elementary cylinder sets intersect with Mi. The equa-
tion g®%1(1/g") = 1/g%1 shows that uM, equals the sum WYy of those
7,1 that have points in common with Mi'

Lel_mm 3. Let {M,) and { FJ) be two finite systems of elementary

cylinder sets; then

uMic UF;
and the M1 are mutualg disggint. Then
DoM< D uF )

Proof. Consider the sum
M= UM, UF,

We apply the prec__eding lemma to the set M. Since the sets Mi ‘are dis-
--Jo:l.nt , the same Yy cannot be contained in two different M,. Conse-

quently those i contained in U M; can be separated into groups with

group '1'1 containing those Yk contained in “1‘ The groups '1'1 are dis-

Joint ’

XMy N (Vus, ) o B e,
§ T 7 .

where T 1s the set of all v, contained in y M; . We now distridbute the

sets i contained in T among other groups. In particular, let sl be

the set of all v, (contained in T) that are contained in Fp, let

8, be the set of all v, contained in F, but not in F;, and let 33 be

the set of e contained in 1"3 but not in sl v sa... . Then:

' gv&(rﬁ.

Since u-FJ (by Lemma 2) equals the sum WY, of all T included in ’3'
This means that

2k, = Zrn = 2 (Zem) = 2ok

The lemma 1s proved,
Corollary. If some set M can be written as the finite sum of dis-
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Joint elementary oylinder sets in two ways -

M= UM, M= {F,
then : .
2uM; = FuF, '
N "
2 oM, = JpF,,
We now extend the function p(M) from elementary cylinder sets to
cylinder sets. '
Definition: Let M be a cylinder set
M= L;M,'.
"where U M, is the sum of a finite number of disjoint elementary cylin-
der seti:a. We say that uM = ?mi
In view of the corollary that has been proven, this definition is

consistent.
s
Lemma 4, Let F -101)11, where M;, ..., M, are disjoint cylinder
gsets. Then

oF = 3 M
i
Proof. We decompose each "1 into disjoint elementary cylinder
sets

M= UM,

’M‘ = 2 ’M"‘ '

Since the M, are disjoint, the "1 3 are also disjoint.
Fa qt’m,,, .

’F -_ );; M‘l'
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We shall now prove that the function u, in a rather strange form,
is countably additive.

Lemma 5. The sum of a countable number of nonempty disjoint

cylinder sets will not be a cylinder set.

" Proof. Let the cylinder set F be the sum of an infinite number of
nonempty disjoint cylinder sets F = U Fy. We decompose each Fi into
disjoint elementary cylinder sets. By Lemma 1, CF is a cylinder set;
we represent CF as the sum of disjoint elementary cylinder sets. We
obtain a.representation for R as the sum of a countable number of
elementary cylinder sets

R-‘L:J:M;.
Let the lg‘l) be those terms in which the first element 1s a,. In
general, we will denote by ug‘l'"‘k) those terms of M, in which the
first k elements are respectively 8;, 85, ..oy 8. Clearly,
Mu)-L‘JMY'- j=0,1,...,g—1.
There is at least one J, J = 31 such that the sum Ll!{’l) contains an
infinite number of terms. In addition, it can be seen that there 1is
at least one J, such that the right side of equation
My, J) = uMfi= P
contains an infinite number of terms. We continue this argument in-
definitely. Let a be the sequence
. amfoy Joo Juesee
Since a ¢ R, a is contained in one of the u1. Let a be contained in
H(Jida... J'). Clearly N(JIJ.‘,... Jg) 18 the only term in the sum y l(1
in which the first s symbols are 31' 32’ ey J.. Thus in the aum
MU bueeey i) m U MRS I
there cannot be an infinite number of terms in the right side. This
- 56 -
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contradiction proves the lemma.

The function W 1s nonnegative, defined on an algebra, countably

additive, and u(0) = 0, i.e., the function u 1s by definition a measure

((39], page 34).

As we know. (for example, from [39], page 59) there exists a
uniquely defined minimal ¢ algebra 2 containing the algebra of
cylinder sets to which the measure L is uniquely extended.

We wlll call the sets of the ¢ algebra ﬂ measurable, We call the
function f(p) meé.surable if it takes on real values and if for any

real ¢ the set of points p in which f(p) < ¢ is measurable.

The theory of the Lebesgue integral is similar to the theory
of functions of a real variable (see [40])).
§19. A Dynamic System in a Space of Sequences of Terms

We define the family of transformations 'l'k, k=0,1, ... in R.

Let
pmty, 8, G,...,
T = 3010 St Caemees
The transformation T is not one-to-one. The complete preimage l‘"‘l of
a point p consists of the g points keyey... gy k=0, 1, ...p 8- 1.

Lemma 1. The measure u is an invariant measure, i.e., the com-

plete preimage of a measurable set 1s measurable, and nTIN = i,

Proof. It 1is sufficient to show that for an elementary cylinder
set M u'l."‘ln = uM. The complete preimage of the elementary cylinder
set M( 8y 6') consists of g disjoint elementary cylinder sets

Mieh...d), 4=0,1,...,g=1,
?Mc-ﬁo 2?“0"'!&,‘1-!“'
The space R, together with the invariant measure p and the
family of transformations 'r“, forms what is called a dynamic systen.
A sot M 1s called invariant 1f TN = M. Sets of all sequence.




that are periodic following a certain term are examples of invariant

sets.

Lemma 2, The space R cannot be represented as the sum of two

measurable invariant disjoint sets with positive measure.

Proof. We assume that we are able to represent R as the sum of
two sets without common points of positive measure, R = Ul U U2. We
let q = WU, 0 < n < 1. Let x(p) be the characteristic function of the
set Ul‘ Let any combination €180 &y of n terms be given and let

pm=... '
be some point in R. Since the sequence
ORI % T .
is one of the nth-order preimages of point p and Ui is an invariant
set,
X(01% . . . 80p) = 1 (p). .
The measure of the intersection of Ul with the elementary cylinder
set M(ey... ¢,) 1s n."s...,z(p)dp. Clearly
”“S*:W)#-"‘T§Z‘P)4P-"‘7PU:-%1-

Assume ¢ > O and 1 ~ 1 > ¢ (both inequalities are strict). By a
theorem similar to the theorem on accumulation points (see [40],
page 286), the set Uy, &8s a set with positive measure, should have an
acocumulation point oo.

$gm 4.0 .
i1.e,, for every ¢ > 0 it 1s possible to find a 60 such éhnt whatever
+lementary cylinder set A with pa < 60 we take that contains the po:gt

%
I.(%.Pﬁ))t—.,

We take an n so large that 1/g" < 3, while for A we take the elementary
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cylinder set “(“’1"2"' T,). On the one hand

P(anA)--:—,;n.

on the other hand

p-(UlnA)>(l—')::," |
This ylelds n > 1 — g, which contradicts the condition 1 — n > e.
This proves the lemma,
§20. Birkhoff-Khinchin Theorem .
Let R be.a set of points and p the points in R. Let u(uR = 1) be

a normalized measure defined on a ¢ algebra of sets P in R.
Let the family of transformations T, k-= 0, 1, 2, ..., R be

defined on itself such that for any integers kl’ > 0 and k2 >0

Th+hp = TH(TAp), pER.

Generally speaking, we do not assume that the generating trans-
formation T 1is oxie-to-one. We let '1"'1A be the complete preimage of
some set A.

‘We shall assume that the complete preimage of every set of lies
in B and that

) sT-1A mpd
(measure in variants).

We shall call the space R together with the measure pu and the
family of transformations Tk, k=0,1, ... & dymnic systen,

The set E 1s called invariant 1if

TEmE,

If R cannot be represented as the sum of two disjoint sets (in
%), both of positive measure, we then say that the dynamic system is
indecomposable (or ergodic).

We shall need to use the so-called Birkhoff-Khinchin ergodic
theorem. This theorem was proved by Birkhoff Ut:l] and Khinchin (42,
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for the case of one-to-one transformations. F. Riez* [43] has extended
this theorem to transformations that are not one-to-one. The proof
given in [43] 1s concise and I shall therefore give it here in its
entirety. '

Theorem (part 1). Let u be an invariant measure, Let thers be a

function ¢(p) that is absolutely summable over the measure u (1i.e.,

the integral 'ﬂﬁﬁ)l‘r exists). Then the limit

lim (M 3 (TP) ... 4 @(T"Ip)

amboo n
ywa-&wm
e:_:ista for nearly all points p€ R (with respect to the measure u).
Proof., We let

- 4’0’)-

-

lim 240 + 9(Tp) + ... 4- 9 (T*p)

=% [ ]

= du(n)s

E« 2(r) +o(Tp) +“--- 2T o).

Consider a set of 1ntervala”on the real line with rational end
pc.unta (anan) (this is a denumerable set). Consider the set Vn of
points p such that for these points

%) < < he < $°0)-
If wn = 0 (n = 1, 2...), then letting V' -Uv we £ind that uV' = 0.
If p& R \ V' 1t 1s impossible to insert any mtcrvu with rational
end points such as y,(p) = y*(p) between y,(p) and v*(p). Thus to
prove the theorem, we must assume the existence of the set vn ('1.0.,

. of the two rational numbers a, and Bn) such that uvV, = 0, and this
must lead to a contradiction. Let us make a chan;o in notation: we
shall write S in place of V,, and a and B 1n ﬁlgéc of a, and B . Thus
S is the set with uS > 0 for the points of \mich

l%m{-...-:'a“‘;) <.<p<£‘&!ﬂi-" i.!p:-'g .‘

We note that the set S 1s an invariant set. In fact, let y'e 8"1;
- & -




then p = Tp'E S and

U H QT b ko (T, _ () L m=t #lo)+ . 9 (T

n n n n—i

lim

') @ (TH) . . .+ (T2 9(0) ... +9(T""%)
nzg'( = ' 9 P’)--ljg‘ n_i . <¢'

A—»00

Tm e te@mt. .. +o (M) fraat...+o(T gy
=00 n R oo n—1

We shall later require the following lemma:
Lemma. Let n real numbers 2, By ceey an and an 1nte§er m<n .tl?.

given, Let us consider all sums formed by sequences of numbers having

a8 number of terms less than or equal tom

Ot Gy ..o ap,
"that are greater than zero. We shall say that the numbers in our se-

quence a, are selected if they figure in at least one of these sums

as the first term. The sum of the selected numbers will be greater

than zero.
Proof. Let akl be the smallest selected number. Let .1‘1 4+ cee +

+ &, be the shortest positive sum beginning with ."1 Then all ot" its

1
=1
terms will be selected numbers, e.g.: "‘1 + e + .ll > 0. In fact, 1if
a_ _ + oo+ 8 < 0, then since 8 + o+ 8y > 0, it follows that
T ] ' 1 A
.kl + .0+ Q % -1 > 0, which contradicts tt'u assumption that ‘kl +
+ ..o + & is the shortest positive sum beginning with . Let

8 e
a“z be the smallest selected number larger than _1;1 and let .“2 + se0 #+
+ .la be the shortest positive sum beginning with ."2 It may be seen
that all of the terms of this sum are selected numbers. In this manner,

we can {ind all the selected numbers. Their sum will equal

;(a..-;-...-;-c,,).
This sum is positive since every ‘.ki + oo #+ ‘.1.1 > 0. The lemma is
proved.
If pE S there exists an n such that
- 61 -
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' -1
_7_@-%-9(1'0)-0-”.-.4-9(1" 2. <8

or
() —B+o(Tp)—B+... +o(T-1)—p>0.
We let 1 stand for the 5mallest‘ of these values of n; 1 = 1(p). We
20t 8{™) ve the set of points pE 8 for which 1(p) < m. Clearly
S(m)c S(m+1)c S(11»4-2)... and
 lim S®emS,

Lol ]

We take some m and take as the sequence in the lemma a sequence of
n + m numbers (We use n + m in place of n)
(@) —B: o(Tp)=B: ..o (T +==1p)—8.
We now take for every P& S the sum of the selected numbers
40) (2(0)— B) + 8 HTP) —B) + . . . + S sm (D) (p (T+=-1p) — ) >0,
where ci(p) is either Oor 1 (1 =1, 2, ..., n + m). Integrating
over the set S, we find

S er-n-na>o
where S, designates the set of those p§ S for which (T p) - B 1s
a selected number. We note that S, = 3(®) . moreover, when k <n,
TS, =8, , and S_ = 708, (k22). In fact, let P S,; then there
is an 1 < m such that

'9(T'“p)—$+9(7"ﬂ)—l+---+v(7‘“"p)—l>0- :
but

o<9(1'"’p)—-|i+90‘ﬁ)-?+---+va‘“'ﬁ—"-
w p(T*Tp) =3 = o(T*1Tp) =P +-.. Rl {thaialt Rod 8

Consequently Tp @ Sy (we do not leave 8, since S is invariant).
Thus T8, S, ;. Moreover, let p '€ S, 1+ We take any preimage -
P of point p': p' = Tp, p€ ‘1"‘18“.

KT+ )+ H (P00, 1 S
But since p' = Tp this expression will equal
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_9(Tr=ip)t o (TH0) +.. sk (Trereip), - ,
i.e., p€ 8y.- Thus T'lsk_lc S).. This, together with TskC S+

proves the statement,

Lt ol o

In view of this statement and the invariance of the measure u we

obtain p

A—y'.' --ﬂ-"- ’ ’ o 7
| 2}(9(r-'p)—ndu-n (0 (o) —B)ds +
hey Sy m) .

"+m

+ 3 '8(9(1"'9)-9)49 . {

k-nﬂ

we may write (m view of ‘S«m-xp)-mm ;ho»)-pm) the inequality

e S e
RIS e

[P SRR

‘Lw)—mw-}j 19618 | du>0.
Thus (as n approaches infinity) |

,L(vw—mw 0.

But since 11ms(®) . g,
) o d

(e —nar>o,
i.e., o
frora>hs.
Moreover, if p @ S, there exists an n such that. - -

'-9(P)+‘—Q(Tp)+...+a;?(ﬁ-lp)>o. é
Repeating the entire argument we obtain 4
fe—rtie20. s> e,

i1.e,, ausS > Pus.
Since us8 > 0, & > B, which contradicts the assumption that g > c.

" The theursm is proved.
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We let

9(1’)-“"1 f(p)-rv(Tn)—'- +4(1""‘p)
The function y(p) is derined nearly everywhere on R. WQ note that the
function y(p) 1s absolutely summable with respect to the measure L.
In fact,

A=1

’[l-—zemm'du <—Jz,w<r~md»-£ Lo d
(this last by the invariance of the measure). From thie and from
Fatou's theorem ([40), page 155) it follows that ;m(p)ldp exists.
From this we conclude that y(p) is finite almost everywhere.
Let us prove a lemma.

Lemma, For any ¢ > O, & & can be found such that for any set A
with pA < & and for any n > 1

il ‘zﬂ?ﬂ"l’)ldﬁb(e.

Proof.

j4 a1
JlwZrrolect 3T ivm o
Let T%A be the complete kth-order preimage of set A. Making a change
in variables, we obtain -

! < g 2

5 L 2ema|ar<t 3
: A=y [ . )

u.'!'kA = pwA. Since the function ¢(p) is absolutely summadble, for g > O

there exists a & > 0 such that as soon as uB < &, §|0ﬂ|#<& Making

use of this fact, we £ind that

rj;“l*v(ﬂ)ld»-

A=}

ﬂ"" )] vﬂ’r)ldp(—-n-e.
The lemma is proven. We also note that by Patou's theorem, it will
4180 he true that

f1e1d<e
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Let us prove the last assertion of the theorem., We have

i 2OH T
R emera S L
We set ¢ > O and for the number ¢ and the function ¢(p) we select a

d in accordance with the lemma. On the basis of the Lebesgue theorem

({40], page 106) for the numbers g/3 and § there exists a no(;/3, )
such that for n > n,

a=1 .
,.e,( w>——,‘.-‘§9 (T*p) >-,-)<‘-

For n > ng we evaluate the difference:

1 (10§
Yoo (3 vrn) a| <
=y
< f $0—+ 3 4| ar <
<| |[s0-+3 vmmlaw‘j 190 | du +
. R“’ L »

*

(the first inequality is obtained from the construction of 5, the

/=]

PR PR RS LT

second is a consequence of the lemma, and the third is obtained from
the lemma). Thus

I*(P)‘!- lim %( g,m’))#‘
but

- n aey ) n a=y
[£(Grmmjen Efpowe.
Since the complete preimage (of any order) of R is R itself

}v(mm -I?Wdﬂ-
Hence

gmé- {roran
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The theorem is proved.

Theorem (part 2). If a dynamic system is indecomposable with

respect to a measure L then for nearly all points p 6 R (with respect

to the measure )

ﬂnl-'fl n ?(p) d.
Proof. It 1s sufficient to show that y(p) i1s constant almost
everywhere. In fact, let y(p) = ¢ nearly everywhere; then by the first

part of the theorem: ¢ §dp-\',(p)4,., o -
R

enR = (o). 4
But UR = 1. Thus (p)m\e¢(p)ds. Which we aleo n;ed.

We shall prove th;t v(p) is constant nearly everywhere. We let M
be the upper bound on the function y(p) calculated with an accuracy
of up to the set of measure zero, i.e., u.Ep(v(p) > M) = 0, while for
any ¢ > O LEp(y(p) > M~ ¢) > O, we let m be the lower bound on the
function ¥(p), calculated with an accuracy of up to the set of measure
zero. We must show that M = m, We assume that M ¥ m, 1.e., let there
be an a such that m < a < M. By definition of M, u.xp(y(p) >a)>0
(the inequality is strict) and by the definition of m

© BRN\E,[$(0)> )= uE, ($(p) <#)>0.
But the set Eb(t(p) >a) and Ep('&(p) < a) 1s invariant. This follows
from the fact that the sums

)o@ . e (T"p)

[ ]
and
a
differ by an expreassion of the order of 0(1/n) for nearly all p. Thus
R has Leen decomposed into the sum of two invariant sets of positive

measurs, vhich contra@icts the hypothesis.
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521. Proof of the Normalitﬁ Criterion for Sequences of Symbols on
e 818 0 € Birkho eorem

We shall now prove the normality of sequences of symbols by the

following method, based on the Birkhoff theorem. We note that the
idea underlying the proof of §4 also underlies this proof. Here the
Birkhoff theorem plays a role similar to that played by Lemma 1, §4.

We shall prove a lemma similar to the Kelly lemma ([40], page 240).

Lemma 1. Let there be given some fixed sequence made up of the
symbols O, 1, ..., g — 1, '
' =ty
There exists a sequence of natural numbers
[ M ny. s
such that for any elementary cylinder set the limit

exists.
Proof. We may label all of the elementary cylinder sets 4, Aa,
The numbers Rn(A)/n lie on the segment [0l1]. Since these numbers
form a bounded_ set, we can find a subsequence of numbers such that
1im N, (8,)/n;, exists; we call this limit #a, . We select the con-
11
vergent sequence “nﬂ(Aa)/“?i' whose limit we designate i’Aa, from the
set of numbers “nu(“z’/“ea)° We note that pm .’%’.- P4, Ve con-
nyre

tinue to choose sequences {n,,} such that

No (8 —

fim mpd;, =], 2...,0L

Bgpe = "
We now put together a diagonal sequence of numbers M = N4y Np =
N, ()
- ces o It 18 clear that lim-———l_.3aA, for a .
22’ hrorhomrsadal ny J
We note that uR = 1. We note further that we can extend the
function i to all cylinder sets and that this function will pogsess
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complete additivity. In short, we can introduce the measure § into
R.

Let us now prove the criteria. Let the sequence

a-a;. Gy, O3, -« - (1)
85tisfy the hypothesis of the oriterion. T
We assume that this sequence 13 not normal. This means that there
exists an elementary cylinder set ﬂ)'land a sequence ol integers ny,
Ngy eees By oo and a number ¢ > O such that

L

—ml>c.

By Lemma 1 of this section, there exists a sequence n such that
i

for any cylinder set A
Napf

ﬂ.l

R

exists. Thus,
Nyd) NyT™2) o .
X "Tx tx i<t
i.e., 1A 1is an invariant normalized measure in a dynamic system.
We let Ji* be the set of all sequences R for which

R
By the Birkhoff theorem (part two) we obtain
pPIR =1,
when we take the characteristic function of the set R for ¢(p) and
make use of the indecomposability with respect to the measure u.
This has as its consequence "

“mﬂ {s.1*)
Xow
In fact, let Cf* be the complement of ]R* in R. This will be the

-],

measuranle set uCP = 0, since as is required by the criterion
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Ny (s, OO .
‘ 0<:§E§JL-X—-<:CMJR =0,
We once again make use of the Birkhoff theorem. The lemma

Him

X=>w -¢‘p).
exists for almost all P with respect to the measure . But

Nx(’o “)
—-x—..

fim Yx e o)

X

=]

and this means that

X'

for almost all p with respect to the measure [i.
_ We make use of the Lebesgue theorem ([40], pages 106 and 108)
(1f a functional sequence converges near;'l.y everywhere with respect

to the measure |i, it will then also converge with respect $o the:

- -

measure ), applying it to the sequence of functions
1(»)~rz(1'p)+ +m"‘p) N, (p. o)

» “-l 2,-0 .

where x(p) is a characteristic function of the ut = Applyin‘ another
of the Lebesgue theorems ([40], page 139) to this functional sequence
and remembering that EL('*_E)(l and ;u;-l , We conclude that:

lim i—x—"o’ L "—SM-;‘R

x-
But by the invariance of ¥

£'§Nx‘po W‘:-;M(P. “)‘;.-;u-

Thus, iR= R
In particular, this means that
Ny, (W)
But
Np, (T
»
l o —a@ie

o b dondll

e



The contradiction proves the criterion.

§22. Dynamic System CObrespond;ggAto the Simplest Markov Chain

Let there be given two nonnegative numbers ) and P which we
shall call "initial probabilities,"” and four nonnegative numbers,
whioch we shall ocall transition probabilities

(G 1),

where
Pu+Po_t"'1v
Metpu=l.
We shall assume that the stationarity conditions
' Pra=PPt-Paren
Pa™=prog+Prry

are valid (it is clear from this that Po+ P = 1).

We shall construct & dynamic system similar to that constructed
by us in §19.

The space R is a space of infinite sequences made up of the
:y-bols. O and 1. We shall call an elementary cylinder set a subset
of R if some number of the first symbols among its elements are fixed.
We shall use M( URED 6') to designate an elementary cylinder set.

We introduce a function p defined on elementary cylinder sets

l. pRem1, pO=mO0.
2. pM@3s .. ) =pepeny .o oy iy
As in §18, we introduce the notion of a cylinder set and prove
that cylinder aets form an algebra. In the analog of Lemma 2-of $§18,— —
'_tt:c proof of the third point is more cumbersome: those Yyeeo Ty
generated in M intersect the ni(ogi)... 621)). They are elementary
oylinder sets of the roﬁu 6{1)... 651)11..’: 1'._'1

LR 1 .
|\
2 2"- Ppa P‘fﬂ‘w...p‘:)..p“..-p -

Hetn=e Y, 0
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B CPReT

1

=P APy 2 Pyo, . 2.‘_.11"_.‘_"._"-
=P ... Pa.‘ o) FMW R

3 .
(since 2_.".,_,"_1....," D

Sssy
We now construct the measure u on the minimum o algébra that
contains the class of cylinder sets.
We define the family of transformations T, k = 0, 1, ... in
R. If p = g;ep5..., then ‘
T'p=titaeg...
Clearly
T p=T" (T
for any integers kl and k2 > 0. The transformation T is not one-to-one.
Lemma 1. The measure u is an invariant measure.
Proof. The complete preimage of the set N( 8qeee 6') consists of
M,(08,... 8,) and My(18,... &,). M, and M, are disjoint
My pMy=pepupry, . - « M+p.m...~.. Poyty™
SR Pyt Poa PPy - Pty (ﬁ*’ﬁ)-

=PPutye e e Pyt =M
(in view of the fact that P10%0s, * PorP1s, - 91_6151)-

Lezme 2. Let the elements of the utrix Poo Poy be positive.
P10 P13

The space R cannot be represented as the sum of two invariant disjoint
sets, both with positive measure, R = U, U U,.

Proof. Let us assume that we are able to represent R as the sum

of two invariant sets with positive measure, not having common points,
Ra=Uy|JUy. We lot = uU;, 0 < n<l, Lot x(p) be the characteris-
tic function of set U;. Let there.be a2 combination 8180+ €, and let
Q= 6162... be some point in R. Since the sequence
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Ch bl

ﬁﬁ.--uhq.“
1s one of the nth-order preimages of point p, and U1 1s-an invariant
set,
206t eat)emy e ,
The measure of the intersection of Uy and the elementary oylinder
set M(elca... en) will equal
%(a)dp.

(6104 -0c0y)
Let T' be a transformation mapping R into H(clca... cn). Carrying out

the inverse transformation we obtain

‘t Sl(‘)df'W(mp-.'.);z(c,t....c.;)-:;-'-:l-ﬁ, e e e e
- v Mieyegety) .

where 61 is the first symbol of a. Thus

» [ Y
L-,...c‘) F. ;l ’y

=122 [rearoe § zea).
We let .
u={ 2t e § 20

m<‘§‘dr-p.. u<~&#-p.-
Since n, + ngy = 7 < Py + Py = 1, one of the inequalities 3, < Py and

np € P; 1s stripped. Thus

'Q'. ".‘ °
ot w<Astagel

(the inequality is stripped). Thus L
PUN Moo o Dmp M. Y,
where n' is strictly less than some p < 1 and 1s independent of n
and k(e ... ¢,). By the hypothesis of the lemma Mey... &) £ O.
Thus
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0

p{Uy NM(e...8,) '
'—,.'m'u;ﬁ_-;;;y—<v<l.

We assume that ¢ > 0 and 1 — p > ¢. In analogy with the accumu-
lation-point theorem, the set Ul, being a set of positive measure,
should have an accumulation point 00,

ymy...,
i.e., for any ¢ > O it is possible to find a S such that for any
elementary cylinder set A containing oo for which pa < 60

plhna >.l—c

(here we make use of the restriction that the matrix elements be .

positive). We choose an n so large that for any cylinder set M = ("1"‘

' £,), WM < 8y, and we take the set A = M(x,75... T,) for A. We then

have
pUaN )< md

UL N > (1—0)ph,
This yields p > 1 - g, which contradicts the hypothesis. This means

that our assumption was erroneous, and the lemma is proved.

§2§ . Markov-Normal Sequences

Let s be & natural number. Consider any s-tuple made up of the
symbols O and 1, A = (8,8,... &_). The quantity p, p eee P
will be designated as u.z.a : ’ 61 6162 6'-16.
Let there be an infinite sequence made up of symbols O and 1
amotty.. (1)
As previously, we form for any natural number s the sequence of

tuples
M--o.d(‘*ooo"‘]’-c-("--..’”ﬂ)' (2)

We let Nr(u, a), or simply lll,(a),' stand for the number of times a
combination A appears prior to the Pth element of Sequence ('2) .




Definition. We call the sequence of symbols (i) Markov-normal
if for any natural number 8 and any combination As of 8 terms the
Climit

Np(a) -
Lo
exists. '

Theorem. Let there be a sequence

... (3)
such that there exists a constant C such that for any s and any com-

bination A,
n_ NP (Al) <C’A.-
Pcn

Then Sequence (3) is Markov-normal.
The rest of the proof follows without changing the proof of the
theorem in §21. _
§24. Construction of Markov-Normal Sequence of Symbols
The -construction of & Markov-normal uquonco of symbols given
here 1is taken from (21].

Let there be a sequence of integers

2<kh<h....

for which
’, i
5—=1+0(3),
and for sequences of positive integers ag) g) ) gg), °](.1)’ for
which the relationship

.=.+ 4 "h
.a' ":’l,-’h
holds, whiie when r — w,
't o)
R el

¢ ench r, we consider the auxiliary Markov chains having




A

transition probabilities

(r) . o7

oo o
2 (P ¥
&) o
S |

(4 (4

and initial probabilities. that satisfy the conditions
old =20,
o R A A
we et u(T) be the corresponding measure. For any combination A
pAmpd+o(l), r— 0. '.
We let L be the sequence of all r-digit numbers in the binary
system (including numbers beginning with zero); each number A will de
" repeated (agg) + ag)B:'lu(r)A) times. When the r-digit numbers are
written, we shall separate them by apostrophes.
Theorem. The sequence of symbols written symbolically as

Gm=BSty... s
1s Markov-normal.
Proof. It is sufficient to show that there exists a constant ¢
that for any s > 1 and any combination A = (6162... 6.) of s terms

Np(a)
E‘T“<c’"
We make the following definitions:
X5 is the number of symbols O or 1 in 8.3
sr is the sequence 8y85... 8,; ,
‘X, 18 the number of symbols O or 1 in Sr, X, s

=)
8, is the number of occurrences of A' in 8.}

A b s o p

G, is the. number of occurrences of 4, in Sr. ,

Let us evaluate s,. Ve know that each r-digit number contains
r symbols and 1s repeated (ag) +.Q i")a:‘lu.(’)Ar times. This means
that
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Xp= § r (o8- ai) B 08, ma r (ol 4 al) B
. (4
(the sum 1s taken over all combinations A, and thus D a4, 1)
oy

" iy ise. ba
We let E(,',‘,:.,_,.,‘)' be the number of sequences in which we find
;11 in the 11“ place, ;12 in the 1”4 place, eto. Since “(r) is an
invariant measure, when 11 >1
, = big—1... 5 —1) lﬂp“h)
pe ’E( TR T ' )"“"’E(u,u,...u, :
A combination 4, may enter into 8. either separated or not

separated by apostrophes, If r < s, 4, cannot enter into s_ unseparated.

r
Where r > s, A enters into s, undivided exactly(r—s+1)F " @id+elha"s,
times. In fact, there are exactly r — 8 4+ 1 ways in which A, can occupy
an unseparated position in an r-digit number: The first term A, may
coincide with the first, second, ... (r -8 + l)g_t_x_ symbol of the r-
digit number. Pixing the kth position, we find that there exist in

8y

wEQ s e et
. i
S T meReEE (1)
r-digit numbers in which 4, can ocoupy this position.
Thus &, 1s contained undivided in 8, XACL1Y(r—s+1)K Yol + a4,
times, and s, contains @2+<DF™ apostrophes. A given apostrophe
cannot separate more than s different A . Thus A, enters undivided into
s,, no more than oywwm-o(-;'-)' times (since r increases, s may
involve a constant).
Thus
Gl — s+ 1) R+ Q)K" 08+ 0 () mxp 0+ 0 (1)
Since
# 0 phgto(l),
then
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Gre=xpdeto(x) .
Moreover
’ ‘ »
Grm J0+0() Xom Dsae
A=1 L .
We obtain _ ____ .. . - " '
lim % -pA.; '
ronx
Let Xy S P <X,
Nr»(8)<Gr Xpr > (r— l)(c‘i“.’-l_--:"’)l::}.
1 _ X, 1 X, _4r(eD ]

A A vt ATEES A

-1
<(' +"'—" —.':':r)T.

Since EL"H'O ..) and -’ .,_'"‘é'_"._.,.+~>o (strictly!),

3<Cx.
r"" ) 2o ccum _;'_ —Cph,
The criterion 1s ututiod and the theorem proven.
25. The Dynamic System in the Theory of Continued Practions
We assume the well-known theory of continued fractions (see [84]).
We take for R the set of infinite sequences of natural numbers.
Let
F"Mt"_
be some infinite sequence of natural nusbers. We ooqm the natuiel
irrational number

po—ir
a+—" ¢
~+—. ..

with thts sequence. This number 1iqs within the segment [O01).
Let E be some set of uquonc‘u, and E" the corresponding set ¢t
irrational numbers on the interval [01]. We will let B(::“."':‘) T
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& bl

LRS-

the set of sequences defined by the fact that their elements contain
¢, in the 1 position ves, in the ¢ sition, and g, in
11 1st ’ 3121 » 2nd po ’ 1

the 1 ., position.If E(12:::3) then B! comutp ot irrationsl numbers
sth (aa... @

from the interval -:—:3;!-'--’-) , where p'_l/q‘_l am p./q. are the next-
to-last and last convergents of

)
ﬁ
“haF
e 4
+a _ .
Py t0y B,
[the fact that the interval is written as ('cT.'lTvTT.') may lud to the

+
incorrect assumption that it is always the case that ""—:‘...:: <e

actually, the direction of the inequality depends on the parity of s).

A We call the set E measurable if the set E' is measursble. We use
mes B to denote the Lebesie measure of set E'. We let uB stand for
the number

re=chafi
Clearly,
' g-é,‘&;l.
Moreover, it is clear that |
Ty M E<ME <y L. (1)

We define in R the family of trensformations (T, k= 0, 1, 2, ...:
it p - 010203040, then ﬁ - °h+1°bt2°ho-3"' .
Clearly
T T @430 450
Ve let T™IE be the complete preimage of set E for the trensformation
r.

uml.muumuumwuntmmmagn_gc
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system, ,
Proof. We need to prove that u’I"'lE = UE,

It clearly is sufficient to show that this relatiomship is true
of the set E for which the corresponding set E' is a set of irrational
numbers from the segment [Oa] (Pig. 2). The complete preimage of the
interval (Oa), as we can see from the drawing, consists of the in-

finite number of intervals

G%:‘)Gﬁ=§9°;

m} o The equation
TN +
| 1t ot &1 J 1y 1\
L Rad | drmsiage(+4) (i)
J ! - 1 p. { 14 .
F i E m‘}.":.(‘“""""ﬁ:')-m“:y;’-;;-
! _ .
v RN £
! $£4 4 7 proves the lemma.
A special case of this lemma is
Pig. 2 represented by the statement: when 1, > 1
Oy iy -
'E(u,u,...c,.
- h=1h=—1... =1
’E( S Sy .. & )'

The lemma given delow was provéd by K. Knopp [45).

Lemma 2. The space R cannot be represented as the sum of two
invariant sets with positive measure.

Proof. In view of Inequality (1) we need to estadlish that R
cannot be represented as the sum of two invariant sets of positive
Lebesgue measure. Let us assume that we are able to do this: R = 01 U
Uy, Then the set of irrational humbers within the interval [01] is
decomposed into the sum of two sets U] |J U}. Let n = mes Uj. The oo
Ui, being a set of positive measure, has an accumulation point -
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ot ootk i

1.e., for ¢ = (1 - n)/(1 + 1) > O there exists a & such that if E'
is an interval containing 9o with mes E < §, then

L PO

Let

atat
We take for E' the 1n£orval consisting of numbers that have the first
incomplete portions Gy65... O of length less than 46, Let this be
Pay ¥ Py P, t tion
the interval ('.__.:T._' f) We let x(x) be the characteristic functi

of the set Ui.

The number
1 .
Vo—1 =
“+ao, Gat + 0
C+ ‘
ey

is one of the preimages of the number x. Thus
+ Py
o x(EE) e
It 1s clear that - dx. -ttt Al 1 ™
# clear that me(ENU)=[200de. mur e [Eayh Blo oo, Thus
& N} '
=i~
3 ' ' &
'?h*‘ﬁ) ZW“"Q-"—*'PHJZ(:&E% T 1 L
-q.«...-:-c.)lfm;;;‘ém.
Since (qn-l"+ qn)2 increases as x goes up, the interval can only
increase if we assume that E' is the interval (Oy).

—1"”: Y €6 lloesr ﬂ)’m‘~ -

e r o —— o — e -

—8aloy o 1
=l=eote ST

i s =

- ® iy - 80 -




which contradicts '“—";-m(%‘,i"’—>l—;-§%. The lemma is proved.

§26. Normal Continued Fraction

Let 8 be a natural number. Consider any s-tuple consisting of
natural numbers A = (6162... 63)‘ Let A' be the set of all irrational
numbers in the interval [0l1], and let the beginning of their decom-
position into & continued fraction be

—
“"'W.
.+-é.-.
Ve define
,A-,A'-é-,i,{-;.
Let there be an infinite sequence consisting of the natural numbers
CCeCas . (1)
We take any natural number s and write Sequence (1) as a caterpillar:
€sCse+C)(CaeeCoat)eeo(CpescCpas)ees (2)
We let NP(A) denote the number of times the combination A = (6162... 6')
is encountered prior to the Pth position of Sequence (2).

Definition. We call the sequence of natural numbers (1) a normal
continued fraction if for any natural number s and any combination
A= (8... 8,) of 8 terms composed of natural numbers the 1mum§
relationship |

Np(d)
i

rA
holds,
We shall need the following theorem.

Theorem, Let there be the sequence

[ (3)
such t! :* there exists a constant C such that for any s and any
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combination 4, = (61...65) of s terms

' (8) 1, _ .
Jm—r<CamFiy- : (4)-

Then Sequence (3) is a normal continued fraction.

Proof. Let (4) be valid. Since

1 . -
QQGA - qn-;’e < 2 Iq ] ¢ A.
the relationship

E'i’jzfi)<c'p A,
holds.

We call the set of sequences whose first s terms are fixed an
elementary cylinder set. The set of all elementary cylinder sets is
denumerable. We can repeat the proof used for the theorem of §21.

§27. Construction of a Normal Continued Fraction

We present here the construction of a normal continued fraction
due to A.G. Postnikov and I.I. Pyatetskiy [21].

We shall need ého following notation:

Let 8, 8p... be groups of natural numbers

‘[-cn-.o-c“. "‘“oon%-oo .

‘ We let

Q== g8,...
be a sequence of natural numbers
@ Cpe.s Cbree-Comgess o

Ve introduce the notation: 1, r are natural numbers 1 - « and
res®, but r/l - 0; s:(,l) is a row consisting of all r-digit groups
8,8,... &, where 1 <8, <1, ... 1< 1a, 5l(¢1,.a2. cees 8, 8TO
natural numbers); here 2;85... 8, is repeated [r*yp's( .::’ )]
times. These r-digit groups are separated from each other by apos-
trophes. The order of these groups within the row is unimportant.

We note that

- 82 -



p#‘pmz( 12 ot' )>‘
i.e., the comdbination ‘1‘2‘“ a, is actuany found in 5(1) As ]

matter of fact, . 1
' +t '
oot (4L ) = > T >
since it is easily shown by induction that

C<OY, G <o+ gos S2Ug QP
Moreover, we let yx(,l) be the number of groups in nz(,-l-) .

It is clear that
- ]

. o .
r"’-z‘ zm~+:rms(.2-; )]-

. _”ﬂpz z'mg( 12...r )+°m

' L=y c,-l . ‘l‘lr
Let uf,l) be the complement of the set

' 12
.."1;'"..“1. (m-co)
It is clear that

vp- 3,;(;)0(,,@.;3':,..:(")) (4.,9,3.20)
" u[v.- i ;-f’-;':; ')] |
Since (see (44], page 78)
-a(;':" ”"")‘c"“(r‘.l:::;.)%"
and, clearly,
'.%Jtl,-o(-}-)L

uup-a(-,-( 14+ ),auz(,)-n- 3 2-3( 5+

+'§ ma(;' ” .;')))

fomt
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But
Zoms(}) <1 S mr(12) <iommtn s o() o -
since r/l —+ O. Clearly
Z. -ﬁlnll!( l...r 4'11180“!-1‘

L T2y 8~}
Therefore

)- 140(l)

3 ayei “ LX] c

We thus obtain
ALY LS Y

I.et xz(,l) be the mmber of numbers in s(l) It is easy to see that

gf_-].'-) - ry(l), and it follows from this that

XD = YUY 4 o(rRWHI),
Next let
Amld) (.. .8
where 1 <a;< X, J=1, 2, ... p (the top and bottom inequalities

cannot be realized), A and p are fixed.

Ve let qx(,-]-'-) be the number that shows how many tia_nl A is found
1n 8{2). The combination A may be contained 1n »{2) separated or not
separated by apostrophes; there are r — p + 1 ways in which A can de
contained in any group without separation: the first term of A may
coincide with the first, second, ..., (r — p + 1l)th term of the
group. Thus the quantity sought will equal

D] el F oot

4 [}
v mee Bl 2 1o +8..0\ 1,
.' E‘ﬁ?‘" ~“.[ (~~°“~ *’.voo“ ]

[

d
ses ”"Pl‘ﬂ ’...'-”—’+".. -
‘.‘oo-+~z-l .E-'[ ..oo.h .I" . O
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e 3 “.éme(l Zoppklir) o

Sy ~t [ “ "‘ g'p#g ceelp

... r—pr—-p-l-l ool -
+c§n .’§.‘ME( S C I ") ) +0lr-9<
gcm:r E(12 .- FYE 3
< ('o§~l -§xm ('l" bt &e1.e ) ¥

[_J «®
S muB(:l.'"::':P'rl ").,.
...-‘ .H-‘ 0 L XN ]

#0ur=grom(mae (L2 ) s mme (20 ) 4
oo meg ([TPE L ))40(rt'-')<

<cmnr(ve(l2 1)+ ne (41 D)) ourn
- Because of the mvarnnce of the measure

‘2tooﬂ'.ﬂ- 2.oo'+l '-'+l!.l’
'E(a.a....-,) ’E(q..'. o )-”’-'B( @ ... )‘
Thus the quantity solved will be less than or equal to

caveme( 2 ) + o0 g

<C'm¢:pma5(‘:: ":')+o(w-o)<
<c-xmme("' * ) +oum

Let us determine how many times A may be contained divided in
‘ri} There are yx(}-) - (l)/r apostrophes in ll(,-l-) . Any given apostrophe

cannot separate more than p different groups. We shall thus have at
most L.pmoldm possililities.

«slU8

e<cmme(l? ':::')-;-.aw;

Let 1 =1, 2... . Wecet r = [1n 1] + 1. Clearly r/1 -0 whon
J = o, Wa Jonote (l) sinply by .(1) and consider the ngumo

.-m*. .
We shall show that this is a normal continued fraction.
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We introduce the notation:
x(-J-'-) is the number of symbols in 3(3'-);

vl

g(-]-'-)ia the number of appearances of A = A" in s(-]:-);

s(1) 1s the row s(1)s(2) ., 4(1); ’

x(-J-'-) is the number of terms in s‘l) .
Clearly
XU e ) 0 o 0,
a{2) 15 the number of occurrences of A in (i)

4
"= gw 400,
A=y
Since

s <coomme( L 00] ) +otom,

we obtain
' 12... »
)
@n g exv ME(%”...' '
10'0,

12...p

N (8) < CX emms B et

)+9M
Lot x(2) < P < x(2*1) | we nave:

12..,
Holh) Hpyentt) X ) U

?
Since
- &nd since i ST
;ﬂ_i_h-o h(:t)’huo'og‘w -0
then
o <C.



5 <cmue(,yllL)-

The eriterion for a n6m1 continued fraction is satisfied.
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NOTES
1 page 4 . Reichenbach [46] deals with this subject.

Copeland [47] gives some 1dea of the importence u. udi... ™le
numbers for provlems in which the frequency is given geometrically.
There is a summary of the application of random arid pseudorandom
numbers given in [48]. This class of problems is also referred to in
[49]. .

2 page 16. A.G. Postnikov [52] put Champernowne's construction
into geometric form and constructed a complex number a + f1 such that
the fractions {(a + B1)(a + b1)*}, x = 1, 2, 3..., are uniformly dis-
tributed (here a + bi is the fixed Gaussian integer, differing from
<1, 1, 1, =1). A.M. Polosuyev [53] also developed a method for the
case in which there are restrictions on an p-order integer matrix
A, and constructed a vector & such that the fractions (GA%X), x = 1,
2, 3..., are uniformly distributed in a unit oube in n-dimensional
space. '

Normal periodic systemshave been used to odtain very good re-
mainder terms in a problea dealing with the mror; distribution
of fractional portions of an exponential function. N.M. Korobov [36)
constructed & system of real numbers G,, ..., G, such that for any
8 and any system of natural numbers larger than one, §,, cees &y

the condition
mm-ruaw(r“*)
(the constant in "O" depends on A) will hold for the number of



occurrences of point ((algf)... {asg:)) within any parallelepiped A
lying within a unit cube with sides parallel to the coordinate axes.
A.G. Postnikov [54] has constructed a real number o for which

the condition
N,(A)-Pmua+o(-,-'2--lo¢logp)
- \vRF
holds. .
N.M. Korobov has solved several problems in which the problem of
constructing numbers a for which fractions (agx), X=1,2, ..., are

uniformly distributed occurs as a special case [55-57]. The methods

of proof in these papers are based on using evaluations of various

' types of trigonometric sums. A study of A.M. Polosuyev dealt with a

generalization of one of the results [58].

We should take note of N.M. Korobov's study evaluating the sums
of fractional portions of an exponential function [59]). Finally,
N.M. Korobov has investigated a solution to inhomogeneous Diophantine
inequalities with exponential functions [36].

3 page 50 We shall apply the Birkhoff-Khinchin theorem to &
dynamic system in a space of sequences of symbols. In this problem,
we can reduce the case of transformations that are not one-to-one to
transformations that are one-to-one, thus eliminating the need for
using the Reig theorem.

We compare with each infinity in the sequence of real numbers
rade up of the symbols O and 1,

Bt
with the sequence, infinite in both Jlrections,
seeBagB.yBglyBg.cs
in whlch
tymta 30,
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We deflne a group of one-to-one transformations on the set of se-
quences of symbols, infinite in both directions, by means of the
equation

Tr( ..o 28y LY TORY Y FERTIRRe
ke ... =1, 0, 1, 2... . An investigation of dynamic systems in &
space of sequences of symbols infinite in one direction is reduced
to studylng a dynamic system in a space of sequences of symbols in-
finite in both directions.
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